import glob import math import os import random import shutil from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torchvision from tqdm import tqdm from . import torch_utils # , google_utils matplotlib.rc('font', **{'size': 11}) # Set printoptions torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) def floatn(x, n=3): # format floats to n decimals return float(format(x, '.%gf' % n)) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch_utils.init_seeds(seed=seed) def load_classes(path): # Loads *.names file at 'path' with open(path, 'r') as f: names = f.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurences per class # Prepend gridpoint count (for uCE trianing) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class mAPs n = len(labels) class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)]) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco_class_weights(): # frequency of each class in coco train2014 n = [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671, 6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689, 4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004, 5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933, 1877, 17630, 4337, 4624, 1075, 3468, 135, 1380] weights = 1 / torch.Tensor(n) weights /= weights.sum() # with open('data/coco.names', 'r') as f: # for k, v in zip(f.read().splitlines(), n): # print('%20s: %g' % (k, v)) return weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.03) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.03) torch.nn.init.constant_(m.bias.data, 0.0) def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 y[:, 1] = (x[:, 1] + x[:, 3]) / 2 y[:, 2] = x[:, 2] - x[:, 0] y[:, 3] = x[:, 3] - x[:, 1] return y def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = max(img1_shape) / max(img0_shape) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=img_shape[1]) # clip x boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=img_shape[0]) # clip y def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (list). conf: Objectness value from 0-1 (list). pred_cls: Predicted object classes (list). target_cls: True object classes (list). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = (target_cls == c).sum() # Number of ground truth objects n_p = i.sum() # Number of predicted objects if n_p == 0 and n_gt == 0: continue elif n_p == 0 or n_gt == 0: ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum() tpc = (tp[i]).cumsum() # Recall recall = tpc / (n_gt + 1e-16) # recall curve r.append(recall[-1]) # Precision precision = tpc / (tpc + fpc) # precision curve p.append(precision[-1]) # AP from recall-precision curve ap.append(compute_ap(recall, precision)) # Plot # fig, ax = plt.subplots(1, 1, figsize=(4, 4)) # ax.plot(np.concatenate(([0.], recall)), np.concatenate(([0.], precision))) # ax.set_xlabel('YOLOv3-SPP') # ax.set_xlabel('Recall') # ax.set_ylabel('Precision') # ax.set_xlim(0, 1) # fig.tight_layout() # fig.savefig('PR_curve.png', dpi=300) # Compute F1 score (harmonic mean of precision and recall) p, r, ap = np.array(p), np.array(r), np.array(ap) f1 = 2 * p * r / (p + r + 1e-16) return p, r, ap, f1, unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)])) mpre = np.concatenate(([0.], precision, [0.])) # Compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # x, y, w, h = box1 b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area iou = inter_area / union_area # iou if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + 1e-16 # convex area return iou - (c_area - union_area) / c_area # GIoU if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # convex diagonal squared c2 = cw ** 2 + ch ** 2 + 1e-16 # centerpoint distance squared rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (1 - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU return iou def wh_iou(box1, box2): # Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2 box2 = box2.t() # w, h = box1 w1, h1 = box1[0], box1[1] w2, h2 = box2[0], box2[1] # Intersection area inter_area = torch.min(w1, w2) * torch.min(h1, h2) # Union Area union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area return inter_area / union_area # iou class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn() https://arxiv.org/pdf/1708.02002.pdf # i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=2.5) def __init__(self, loss_fcn, gamma=0.5, alpha=1, reduction='mean'): super(FocalLoss, self).__init__() loss_fcn.reduction = 'none' # required to apply FL to each element self.loss_fcn = loss_fcn self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, input, target): loss = self.loss_fcn(input, target) loss *= self.alpha * (1.000001 - torch.exp(-loss)) ** self.gamma # non-zero power for gradient stability if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss def compute_loss(p, targets, model): # predictions, targets, model ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor lcls, lbox, lobj = ft([0]), ft([0]), ft([0]) tcls, tbox, indices, anchor_vec = build_targets(model, targets) h = model.hyp # hyperparameters arc = model.arc # # (default, uCE, uBCE) detection architectures # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']])) BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']])) BCE = nn.BCEWithLogitsLoss() CE = nn.CrossEntropyLoss() # weight=model.class_weights if 'F' in arc: # add focal loss g = h['fl_gamma'] BCEcls, BCEobj, BCE, CE = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g), FocalLoss(BCE, g), FocalLoss(CE, g) # Compute losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0]) # target obj # Compute losses nb = len(b) if nb: # number of targets ps = pi[b, a, gj, gi] # prediction subset corresponding to targets tobj[b, a, gj, gi] = 1.0 # obj # ps[:, 2:4] = torch.sigmoid(ps[:, 2:4]) # wh power loss (uncomment) # GIoU pxy = torch.sigmoid(ps[:, 0:2]) # pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy) pbox = torch.cat((pxy, torch.exp(ps[:, 2:4]).clamp(max=1E3) * anchor_vec[i]), 1) # predicted box giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou computation lbox += (1.0 - giou).mean() # giou loss if 'default' in arc and model.nc > 1: # cls loss (only if multiple classes) t = torch.zeros_like(ps[:, 5:]) # targets t[range(nb), tcls[i]] = 1.0 lcls += BCEcls(ps[:, 5:], t) # BCE # lcls += CE(ps[:, 5:], tcls[i]) # CE # Instance-class weighting (use with reduction='none') # nt = t.sum(0) + 1 # number of targets per class # lcls += (BCEcls(ps[:, 5:], t) / nt).mean() * nt.mean() # v1 # lcls += (BCEcls(ps[:, 5:], t) / nt[tcls[i]].view(-1,1)).mean() * nt.mean() # v2 # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] if 'default' in arc: # separate obj and cls lobj += BCEobj(pi[..., 4], tobj) # obj loss elif 'BCE' in arc: # unified BCE (80 classes) t = torch.zeros_like(pi[..., 5:]) # targets if nb: t[b, a, gj, gi, tcls[i]] = 1.0 lobj += BCE(pi[..., 5:], t) elif 'CE' in arc: # unified CE (1 background + 80 classes) t = torch.zeros_like(pi[..., 0], dtype=torch.long) # targets if nb: t[b, a, gj, gi] = tcls[i] + 1 lcls += CE(pi[..., 4:].view(-1, model.nc + 1), t.view(-1)) lbox *= h['giou'] lobj *= h['obj'] lcls *= h['cls'] loss = lbox + lobj + lcls return loss, torch.cat((lbox, lobj, lcls, loss)).detach() def build_targets(model, targets): # targets = [image, class, x, y, w, h] nt = len(targets) tcls, tbox, indices, av = [], [], [], [] multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for i in model.yolo_layers: # get number of grid points and anchor vec for this yolo layer if multi_gpu: ng, anchor_vec = model.module.module_list[i].ng, model.module.module_list[i].anchor_vec else: ng, anchor_vec = model.module_list[i].ng, model.module_list[i].anchor_vec # iou of targets-anchors t, a = targets, [] gwh = t[:, 4:6] * ng if nt: iou = torch.stack([wh_iou(x, gwh) for x in anchor_vec], 0) use_best_anchor = False if use_best_anchor: iou, a = iou.max(0) # best iou and anchor else: # use all anchors na = len(anchor_vec) # number of anchors a = torch.arange(na).view((-1, 1)).repeat([1, nt]).view(-1) t = targets.repeat([na, 1]) gwh = gwh.repeat([na, 1]) # reject anchors below iou_thres (OPTIONAL, increases P, lowers R) reject = True if reject: j = iou.view(-1) > model.hyp['iou_t'] # iou threshold hyperparameter t, a, gwh = t[j], a[j], gwh[j] # Indices b, c = t[:, :2].long().t() # target image, class gxy = t[:, 2:4] * ng # grid x, y gi, gj = gxy.long().t() # grid x, y indices indices.append((b, a, gj, gi)) # GIoU gxy -= gxy.floor() # xy tbox.append(torch.cat((gxy, gwh), 1)) # xywh (grids) av.append(anchor_vec[a]) # anchor vec # Class tcls.append(c) if c.shape[0]: # if any targets assert c.max() < model.nc, 'Model accepts %g classes labeled from 0-%g, however you labelled a class %g. ' \ 'See https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data' % ( model.nc, model.nc - 1, c.max()) return tcls, tbox, indices, av def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.5): """ Removes detections with lower object confidence score than 'conf_thres' Non-Maximum Suppression to further filter detections. Returns detections with shape: (x1, y1, x2, y2, object_conf, class_conf, class) """ min_wh, max_wh = 2, 10000 # (pixels) minimum and maximium box width and height output = [None] * len(prediction) for image_i, pred in enumerate(prediction): # Experiment: Prior class size rejection # x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3] # a = w * h # area # ar = w / (h + 1e-16) # aspect ratio # n = len(w) # log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar) # shape_likelihood = np.zeros((n, 60), dtype=np.float32) # x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1) # from scipy.stats import multivariate_normal # for c in range(60): # shape_likelihood[:, c] = # multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2]) # Multiply conf by class conf to get combined confidence class_conf, class_pred = pred[:, 5:].max(1) pred[:, 4] *= class_conf # # Merge classes (optional) # class_pred[(class_pred.view(-1,1) == torch.LongTensor([2, 3, 5, 6, 7]).view(1,-1)).any(1)] = 2 # # # Remove classes (optional) # pred[class_pred != 2, 4] = 0.0 # Select only suitable predictions i = (pred[:, 4] > conf_thres) & (pred[:, 2:4] > min_wh).all(1) & (pred[:, 2:4] < max_wh).all(1) & \ torch.isfinite(pred).all(1) pred = pred[i] # If none are remaining => process next image if len(pred) == 0: continue # Select predicted classes class_conf = class_conf[i] class_pred = class_pred[i].unsqueeze(1).float() # Box (center x, center y, width, height) to (x1, y1, x2, y2) pred[:, :4] = xywh2xyxy(pred[:, :4]) # Detections ordered as (x1y1x2y2, obj_conf, class_conf, class_pred) pred = torch.cat((pred[:, :5], class_conf.unsqueeze(1), class_pred), 1) # Get detections sorted by decreasing confidence scores pred = pred[(-pred[:, 4]).argsort()] # Set NMS method https://github.com/ultralytics/yolov3/issues/679 # 'OR', 'AND', 'MERGE', 'VISION', 'VISION_BATCHED' method = 'MERGE' if conf_thres <= 0.01 else 'VISION' # MERGE is highest mAP, VISION is fastest # Batched NMS if method == 'VISION_BATCHED': i = torchvision.ops.boxes.batched_nms(boxes=pred[:, :4], scores=pred[:, 4], idxs=pred[:, 6], iou_threshold=nms_thres) output[image_i] = pred[i] continue # Non-maximum suppression det_max = [] for c in pred[:, -1].unique(): dc = pred[pred[:, -1] == c] # select class c n = len(dc) if n == 1: det_max.append(dc) # No NMS required if only 1 prediction continue elif n > 500: dc = dc[:500] # limit to first 500 boxes: https://github.com/ultralytics/yolov3/issues/117 if method == 'VISION': i = torchvision.ops.boxes.nms(dc[:, :4], dc[:, 4], nms_thres) det_max.append(dc[i]) elif method == 'OR': # default # METHOD1 # ind = list(range(len(dc))) # while len(ind): # j = ind[0] # det_max.append(dc[j:j + 1]) # save highest conf detection # reject = (bbox_iou(dc[j], dc[ind]) > nms_thres).nonzero() # [ind.pop(i) for i in reversed(reject)] # METHOD2 while dc.shape[0]: det_max.append(dc[:1]) # save highest conf detection if len(dc) == 1: # Stop if we're at the last detection break iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes dc = dc[1:][iou < nms_thres] # remove ious > threshold elif method == 'AND': # requires overlap, single boxes erased while len(dc) > 1: iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes if iou.max() > 0.5: det_max.append(dc[:1]) dc = dc[1:][iou < nms_thres] # remove ious > threshold elif method == 'MERGE': # weighted mixture box while len(dc): if len(dc) == 1: det_max.append(dc) break i = bbox_iou(dc[0], dc) > nms_thres # iou with other boxes weights = dc[i, 4:5] dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum() det_max.append(dc[:1]) dc = dc[i == 0] elif method == 'SOFT': # soft-NMS https://arxiv.org/abs/1704.04503 sigma = 0.5 # soft-nms sigma parameter while len(dc): if len(dc) == 1: det_max.append(dc) break det_max.append(dc[:1]) iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes dc = dc[1:] dc[:, 4] *= torch.exp(-iou ** 2 / sigma) # decay confidences dc = dc[dc[:, 4] > conf_thres] # https://github.com/ultralytics/yolov3/issues/362 if len(det_max): det_max = torch.cat(det_max) # concatenate output[image_i] = det_max[(-det_max[:, 4]).argsort()] # sort return output def get_yolo_layers(model): bool_vec = [x['type'] == 'yolo' for x in model.module_defs] return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3 def print_model_biases(model): # prints the bias neurons preceding each yolo layer print('\nModel Bias Summary (per output layer):') multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for l in model.yolo_layers: # print pretrained biases if multi_gpu: na = model.module.module_list[l].na # number of anchors b = model.module.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 else: na = model.module_list[l].na b = model.module_list[l - 1][0].bias.view(na, -1) # bias 3x85 print('regression: %5.2f+/-%-5.2f ' % (b[:, :4].mean(), b[:, :4].std()), 'objectness: %5.2f+/-%-5.2f ' % (b[:, 4].mean(), b[:, 4].std()), 'classification: %5.2f+/-%-5.2f' % (b[:, 5:].mean(), b[:, 5:].std())) def strip_optimizer(f='weights/last.pt'): # from utils.utils import *; strip_optimizer() # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None # x['training_results'] = None # uncomment to create a backbone # x['epoch'] = -1 # uncomment to create a backbone torch.save(x, f) def create_backbone(f='weights/last.pt'): # from utils.utils import *; create_backbone() # create a backbone from a *.pt file x = torch.load(f, map_location=torch.device('cpu')) x['optimizer'] = None x['training_results'] = None x['epoch'] = -1 for p in x['model'].values(): try: p.requires_grad = True except: pass torch.save(x, 'weights/backbone.pt') def coco_class_count(path='../coco/labels/train2014/'): # Histogram of occurrences per class nc = 80 # number classes x = np.zeros(nc, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) print(i, len(files)) def coco_only_people(path='../coco/labels/val2014/'): # Find images with only people files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) if all(labels[:, 0] == 0): print(labels.shape[0], file) def select_best_evolve(path='evolve*.txt'): # from utils.utils import *; select_best_evolve() # Find best evolved mutation for file in sorted(glob.glob(path)): x = np.loadtxt(file, dtype=np.float32, ndmin=2) print(file, x[fitness(x).argmax()]) def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random() # crops images into random squares up to scale fraction # WARNING: overwrites images! for file in tqdm(sorted(glob.glob('%s/*.*' % path))): img = cv2.imread(file) # BGR if img is not None: h, w = img.shape[:2] # create random mask a = 30 # minimum size (pixels) mask_h = random.randint(a, int(max(a, h * scale))) # mask height mask_w = mask_h # mask width # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels() if os.path.exists('new/'): shutil.rmtree('new/') # delete output folder os.makedirs('new/') # make new output folder os.makedirs('new/labels/') os.makedirs('new/images/') for file in tqdm(sorted(glob.glob('%s/*.*' % path))): with open(file, 'r') as f: labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) i = labels[:, 0] == label_class if any(i): img_file = file.replace('labels', 'images').replace('txt', 'jpg') labels[:, 0] = 0 # reset class to 0 with open('new/images.txt', 'a') as f: # add image to dataset list f.write(img_file + '\n') with open('new/labels/' + Path(file).name, 'a') as f: # write label for l in labels[i]: f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images def kmeans_targets(path='../coco/trainvalno5k.txt', n=9, img_size=416): # from utils.utils import *; kmeans_targets() # Produces a list of target kmeans suitable for use in *.cfg files from utils.datasets import LoadImagesAndLabels from scipy import cluster # Get label wh dataset = LoadImagesAndLabels(path, augment=True, rect=True, cache_labels=True) for s, l in zip(dataset.shapes, dataset.labels): l[:, [1, 3]] *= s[0] # normalized to pixels l[:, [2, 4]] *= s[1] l[:, 1:] *= img_size / max(s) * random.uniform(0.5, 1.5) # nominal img_size for training wh = np.concatenate(dataset.labels, 0)[:, 3:5] # wh from cxywh # Kmeans calculation k, dist = cluster.vq.kmeans(wh, n) # points, mean distance k = k[np.argsort(k.prod(1))] # sort small to large # # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = cluster.vq.kmeans(wh, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # Measure IoUs iou = torch.stack([wh_iou(torch.Tensor(wh).T, torch.Tensor(x).T) for x in k], 0) biou = iou.max(0)[0] # closest anchor IoU print('Best possible recall: %.3f' % (biou > 0.2635).float().mean()) # BPR (best possible recall) # Print print('kmeans anchors (n=%g, img_size=%g, IoU=%.2f/%.2f/%.2f-min/mean/best): ' % (n, img_size, biou.min(), iou.mean(), biou.mean()), end='') for i, x in enumerate(k): print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg # Plot # plt.hist(biou.numpy().ravel(), 100) def print_mutation(hyp, results, bucket=''): # Print mutation results to evolve.txt (for use with train.py --evolve) a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values c = '%10.3g' * len(results) % results # results (P, R, mAP, F1, test_loss) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) if bucket: os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt with open('evolve.txt', 'a') as f: # append result f.write(c + b + '\n') x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness if bucket: os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt def apply_classifier(x, model, img, im0): # applies a second stage classifier to yolo outputs for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0.shape) # Classes pred_cls1 = d[:, 6].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[int(a[1]):int(a[3]), int(a[0]):int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('test%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def fitness(x): # Returns fitness (for use with results.txt or evolve.txt) return x[:, 2] * 0.8 + x[:, 3] * 0.2 # weighted mAP and F1 combination # Plotting functions --------------------------------------------------------------------------------------------------- def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def plot_wh_methods(): # from utils.utils import *; plot_wh_methods() # Compares the two methods for width-height anchor multiplication # https://github.com/ultralytics/yolov3/issues/168 x = np.arange(-4.0, 4.0, .1) ya = np.exp(x) yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 fig = plt.figure(figsize=(6, 3), dpi=150) plt.plot(x, ya, '.-', label='yolo method') plt.plot(x, yb ** 2, '.-', label='^2 power method') plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method') plt.xlim(left=-4, right=4) plt.ylim(bottom=0, top=6) plt.xlabel('input') plt.ylabel('output') plt.legend() fig.tight_layout() fig.savefig('comparison.png', dpi=200) def plot_images(imgs, targets, paths=None, fname='images.jpg'): # Plots training images overlaid with targets imgs = imgs.cpu().numpy() targets = targets.cpu().numpy() # targets = targets[targets[:, 1] == 21] # plot only one class fig = plt.figure(figsize=(10, 10)) bs, _, h, w = imgs.shape # batch size, _, height, width bs = min(bs, 16) # limit plot to 16 images ns = np.ceil(bs ** 0.5) # number of subplots for i in range(bs): boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T boxes[[0, 2]] *= w boxes[[1, 3]] *= h plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0)) plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-') plt.axis('off') if paths is not None: s = Path(paths[i]).name plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters fig.tight_layout() fig.savefig(fname, dpi=200) plt.close() def plot_test_txt(): # from utils.utils import *; plot_test() # Plot test.txt histograms x = np.loadtxt('test.txt', dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect('equal') fig.tight_layout() plt.savefig('hist2d.jpg', dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6)) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) fig.tight_layout() plt.savefig('hist1d.jpg', dpi=200) def plot_targets_txt(): # from utils.utils import *; plot_targets_txt() # Plot test.txt histograms x = np.loadtxt('targets.txt', dtype=np.float32) x = x.T s = ['x targets', 'y targets', 'width targets', 'height targets'] fig, ax = plt.subplots(2, 2, figsize=(8, 8)) ax = ax.ravel() for i in range(4): ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) ax[i].legend() ax[i].set_title(s[i]) fig.tight_layout() plt.savefig('targets.jpg', dpi=200) def plot_evolution_results(hyp): # from utils.utils import *; plot_evolution_results(hyp) # Plot hyperparameter evolution results in evolve.txt x = np.loadtxt('evolve.txt', ndmin=2) f = fitness(x) weights = (f - f.min()) ** 2 # for weighted results fig = plt.figure(figsize=(12, 10)) matplotlib.rc('font', **{'size': 8}) for i, (k, v) in enumerate(hyp.items()): y = x[:, i + 7] # mu = (y * weights).sum() / weights.sum() # best weighted result mu = y[f.argmax()] # best single result plt.subplot(4, 5, i + 1) plt.plot(mu, f.max(), 'o', markersize=10) plt.plot(y, f, '.') plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters print('%15s: %.3g' % (k, mu)) fig.tight_layout() plt.savefig('evolve.png', dpi=200) def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay() # Plot training results files 'results*.txt', overlaying train and val losses s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'F1'] # legends t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) fig, ax = plt.subplots(1, 5, figsize=(14, 3.5)) ax = ax.ravel() for i in range(5): for j in [i, i + 5]: y = results[j, x] if i in [0, 1, 2]: y[y == 0] = np.nan # dont show zero loss values ax[i].plot(x, y, marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend() ax[i].set_ylabel(f) if i == 0 else None # add filename fig.tight_layout() fig.savefig(f.replace('.txt', '.png'), dpi=200) def plot_results(start=0, stop=0): # from utils.utils import *; plot_results() # Plot training results files 'results*.txt' fig, ax = plt.subplots(2, 5, figsize=(14, 7)) ax = ax.ravel() s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', 'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'F1'] for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): y = results[i, x] if i in [0, 1, 2, 5, 6, 7]: y[y == 0] = np.nan # dont show zero loss values ax[i].plot(x, y, marker='.', label=f.replace('.txt', '')) ax[i].set_title(s[i]) if i in [5, 6, 7]: # share train and val loss y axes ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) fig.tight_layout() ax[1].legend() fig.savefig('results.png', dpi=200)