import argparse from models import * from utils.datasets import * from utils.utils import * parser = argparse.ArgumentParser() parser.add_argument('-epochs', type=int, default=200, help='number of epochs') parser.add_argument('-batch_size', type=int, default=32, help='size of each image batch') parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file') parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='path to data config file') parser.add_argument('-weights_path', type=str, default='checkpoints/yolov3.weights', help='path to weights file') parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file') parser.add_argument('-iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected') parser.add_argument('-conf_thres', type=float, default=0.5, help='object confidence threshold') parser.add_argument('-nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') parser.add_argument('-n_cpu', type=int, default=0, help='number of cpu threads to use during batch generation') parser.add_argument('-img_size', type=int, default=416, help='size of each image dimension') parser.add_argument('-use_cuda', type=bool, default=True, help='whether to use cuda if available') opt = parser.parse_args() print(opt) cuda = torch.cuda.is_available() and opt.use_cuda device = torch.device('cuda:0' if cuda else 'cpu') # Get data configuration data_config = parse_data_config(opt.data_config_path) test_path = data_config['valid'] num_classes = int(data_config['classes']) # Initiate model model = Darknet(opt.cfg, opt.img_size) # Load weights weights_path = 'checkpoints/yolov3.pt' if weights_path.endswith('.weights'): # darknet format load_weights(model, weights_path) elif weights_path.endswith('.pt'): # pytorch format checkpoint = torch.load(weights_path, map_location='cpu') model.load_state_dict(checkpoint['model']) del checkpoint model.to(device).eval() # Get dataloader # dataset = ListDataset(test_path) # dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) dataloader = ListDataset(test_path, batch_size=opt.batch_size, img_size=opt.img_size) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor n_gt = 0 correct = 0 print('Compute mAP...') outputs = [] targets = None APs = [] for batch_i, (imgs, targets) in enumerate(dataloader): imgs = imgs.to(device) with torch.no_grad(): output = model(imgs) output = non_max_suppression(output, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres) # Compute average precision for each sample for sample_i in range(len(targets)): correct = [] # Get labels for sample where width is not zero (dummies) annotations = targets[sample_i] # Extract detections detections = output[sample_i] if detections is None: # If there are no detections but there are annotations mask as zero AP if annotations.size(0) != 0: APs.append(0) continue # Get detections sorted by decreasing confidence scores detections = detections[np.argsort(-detections[:, 4])] # If no annotations add number of detections as incorrect if annotations.size(0) == 0: correct.extend([0 for _ in range(len(detections))]) else: # Extract target boxes as (x1, y1, x2, y2) target_boxes = torch.FloatTensor(annotations[:, 1:].shape) target_boxes[:, 0] = (annotations[:, 1] - annotations[:, 3] / 2) target_boxes[:, 1] = (annotations[:, 2] - annotations[:, 4] / 2) target_boxes[:, 2] = (annotations[:, 1] + annotations[:, 3] / 2) target_boxes[:, 3] = (annotations[:, 2] + annotations[:, 4] / 2) target_boxes *= opt.img_size detected = [] for *pred_bbox, conf, obj_conf, obj_pred in detections: pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1) # Compute iou with target boxes iou = bbox_iou(pred_bbox, target_boxes) # Extract index of largest overlap best_i = np.argmax(iou) # If overlap exceeds threshold and classification is correct mark as correct if iou[best_i] > opt.iou_thres and obj_pred == annotations[best_i, 0] and best_i not in detected: correct.append(1) detected.append(best_i) else: correct.append(0) # Extract true and false positives true_positives = np.array(correct) false_positives = 1 - true_positives # Compute cumulative false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # Compute recall and precision at all ranks recall = true_positives / annotations.size(0) if annotations.size(0) else true_positives precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps) # Compute average precision AP = compute_ap(recall, precision) APs.append(AP) print("+ Sample [%d/%d] AP: %.4f (%.4f)" % (len(APs), len(dataloader) * opt.batch_size, AP, np.mean(APs))) print("Mean Average Precision: %.4f" % np.mean(APs))