import argparse import time from sys import platform from models import * from utils.datasets import * from utils.utils import * def detect( cfg, data_cfg, weights, images, output='output', # output folder img_size=416, conf_thres=0.3, nms_thres=0.5, save_txt=False, save_images=True, webcam=False ): device = torch_utils.select_device() if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder # Initialize model model = Darknet(cfg, img_size) # Load weights if weights.endswith('.pt'): # pytorch format model.load_state_dict(torch.load(weights, map_location=device)['model']) else: # darknet format _ = load_darknet_weights(model, weights) model.to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: save_images = False dataloader = LoadWebcam(img_size=img_size) else: dataloader = LoadImages(images, img_size=img_size) # Get classes and colors classes = load_classes(parse_data_cfg(data_cfg)['names']) colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] for i, (path, img, im0, vid_cap) in enumerate(dataloader): t = time.time() save_path = str(Path(output) / Path(path).name) # Get detections img = torch.from_numpy(img).unsqueeze(0).to(device) if ONNX_EXPORT: torch.onnx.export(model, img, 'weights/model.onnx', verbose=True) return pred = model(img) detections = non_max_suppression(pred, conf_thres, nms_thres)[0] if detections is not None and len(detections) > 0: # Rescale boxes from 416 to true image size scale_coords(img_size, detections[:, :4], im0.shape).round() # Print results to screen for c in detections[:, -1].unique(): n = (detections[:, -1] == c).sum() print('%g %ss' % (n, classes[int(c)]), end=', ') # Draw bounding boxes and labels of detections for *xyxy, conf, cls_conf, cls in detections: if save_txt: # Write to file with open(save_path + '.txt', 'a') as file: file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf)) # Add bbox to the image label = '%s %.2f' % (classes[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) print('Done. (%.3fs)' % (time.time() - t)) if webcam: # Show live webcam cv2.imshow(weights, im0) if save_images: # Save generated image with detections if dataloader.mode == 'video': if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = vid_cap.get(cv2.CAP_PROP_FPS) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'avc1'), fps, (width, height)) vid_writer.write(im0) else: cv2.imwrite(save_path, im0) if save_images and platform == 'darwin': # macos os.system('open ' + output + ' ' + save_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path') parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path') parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='path to weights file') parser.add_argument('--images', type=str, default='data/samples', help='path to images') parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension') parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold') parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression') opt = parser.parse_args() print(opt) with torch.no_grad(): detect( opt.cfg, opt.data_cfg, opt.weights, opt.images, img_size=opt.img_size, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres )