import argparse import time from models import * from utils.datasets import * from utils.utils import * from utils import torch_utils def detect( cfg, weights, images, output='output', img_size=416, conf_thres=0.3, nms_thres=0.45, save_txt=False, save_images=True ): device = torch_utils.select_device() os.system('rm -rf ' + output) os.makedirs(output, exist_ok=True) # Load model model = Darknet(cfg, img_size) if weights.endswith('.pt'): # pytorch format if weights.endswith('weights/yolov3.pt') and not os.path.isfile(weights): os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights) model.load_state_dict(torch.load(weights, map_location='cpu')['model']) else: # darknet format load_darknet_weights(model, weights) model.to(device).eval() # Set Dataloader dataloader = load_images(images, img_size=img_size) # Get classes and colors classes = load_classes(parse_data_cfg('cfg/coco.data')['names']) colors = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))] for i, (path, img, im0) in enumerate(dataloader): print("%g/%g '%s': " % (i + 1, len(dataloader), path), end='') t = time.time() # Get detections img = torch.from_numpy(img).unsqueeze(0).to(device) if ONNX_EXPORT: torch.onnx._export(model, img, 'weights/model.onnx', verbose=True) return # ONNX export pred = model(img) pred = pred[pred[:, :, 4] > conf_thres] if len(pred) > 0: detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0] # Draw bounding boxes and labels of detections if detections is not None: save_img_path = os.path.join(output, path.split('/')[-1]) save_txt_path = save_img_path + '.txt' # Rescale boxes from 416 to true image size detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape) unique_classes = detections[:, -1].cpu().unique() for i in unique_classes: n = (detections[:, -1].cpu() == i).sum() print('%g %ss' % (n, classes[int(i)]), end=', ') for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: if save_txt: # Write to file with open(save_txt_path, 'a') as file: file.write('%g %g %g %g %g %g\n' % (x1, y1, x2, y2, cls_pred, cls_conf * conf)) if save_images: # Add bbox to the image label = '%s %.2f' % (classes[int(cls_pred)], conf) plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[int(cls_pred)]) if save_images: # Save generated image with detections cv2.imwrite(save_img_path, im0) print(' Done. (%.3fs)' % (time.time() - t)) if platform == 'darwin': # MacOS os.system('open ' + output + '&& open ' + save_img_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path') parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file') parser.add_argument('--images', type=str, default='data/samples', help='path to images') parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension') parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold') parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') opt = parser.parse_args() print(opt) with torch.no_grad(): detect( opt.cfg, opt.weights, opt.images, img_size=opt.img_size, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres )