import glob import math import os import random import shutil from pathlib import Path import cv2 import numpy as np import torch from torch.utils.data import Dataset from tqdm import tqdm from utils.utils import xyxy2xywh class LoadImages: # for inference def __init__(self, path, img_size=416): self.height = img_size img_formats = ['.jpg', '.jpeg', '.png', '.tif'] vid_formats = ['.mov', '.avi', '.mp4'] files = [] if os.path.isdir(path): files = sorted(glob.glob('%s/*.*' % path)) elif os.path.isfile(path): files = [path] images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] nI, nV = len(images), len(videos) self.files = images + videos self.nF = nI + nV # number of files self.video_flag = [False] * nI + [True] * nV self.mode = 'images' if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nF > 0, 'No images or videos found in ' + path def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nF: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if self.count == self.nF: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() self.frame += 1 print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='') else: # Read image self.count += 1 img0 = cv2.imread(path) # BGR assert img0 is not None, 'File Not Found ' + path print('image %g/%g %s: ' % (self.count, self.nF, path), end='') # Padded resize img, _, _, _ = letterbox(img0, new_shape=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image return path, img, img0, self.cap def new_video(self, path): self.frame = 0 self.cap = cv2.VideoCapture(path) self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) def __len__(self): return self.nF # number of files class LoadWebcam: # for inference def __init__(self, img_size=416): self.cam = cv2.VideoCapture(0) self.height = img_size def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if cv2.waitKey(1) == 27: # esc to quit cv2.destroyAllWindows() raise StopIteration # Read image ret_val, img0 = self.cam.read() assert ret_val, 'Webcam Error' img_path = 'webcam_%g.jpg' % self.count img0 = cv2.flip(img0, 1) # flip left-right print('webcam %g: ' % self.count, end='') # Padded resize img, _, _, _ = letterbox(img0, new_shape=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return img_path, img, img0, None def __len__(self): return 0 class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=416, batch_size=16, augment=False, rect=True, image_weights=False, cache=False, multi_scale=False): with open(path, 'r') as f: img_files = f.read().splitlines() self.img_files = list(filter(lambda x: len(x) > 0, img_files)) n = len(self.img_files) bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index nb = bi[-1] + 1 # number of batches assert n > 0, 'No images found in %s' % path self.n = n self.batch = bi # batch index of image self.img_size = img_size self.augment = augment self.image_weights = image_weights self.rect = False if image_weights else rect self.label_files = [x.replace('images', 'labels'). replace('.jpeg', '.txt'). replace('.jpg', '.txt'). replace('.bmp', '.txt'). replace('.png', '.txt') for x in self.img_files] if multi_scale: s = img_size / 32 self.multi_scale = ((np.linspace(0.5, 1.5, nb) * s).round().astype(np.int) * 32) # Rectangular Training https://github.com/ultralytics/yolov3/issues/232 if self.rect: from PIL import Image # Read image shapes sp = 'data' + os.sep + path.replace('.txt', '.shapes').split(os.sep)[-1] # shapefile path if os.path.exists(sp): # read existing shapefile with open(sp, 'r') as f: s = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) assert len(s) == n, 'Shapefile out of sync, please delete %s and rerun' % sp else: # no shapefile, so read shape using PIL and write shapefile for next time (faster) s = np.array([Image.open(f).size for f in tqdm(self.img_files, desc='Reading image shapes')]) np.savetxt(sp, s, fmt='%g') # Sort by aspect ratio ar = s[:, 1] / s[:, 0] # aspect ratio i = ar.argsort() ar = ar[i] self.img_files = [self.img_files[i] for i in i] self.label_files = [self.label_files[i] for i in i] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32.).astype(np.int) * 32 # Preload images if cache and (n < 1001): # preload all images into memory if possible self.imgs = [cv2.imread(self.img_files[i]) for i in tqdm(range(n), desc='Reading images')] # Preload labels (required for weighted CE training) self.labels = [np.zeros((0, 5))] * n iter = tqdm(self.label_files, desc='Reading labels') if n > 1000 else self.label_files for i, file in enumerate(iter): try: with open(file, 'r') as f: l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) if l.shape[0]: assert l.shape[1] == 5, '> 5 label columns: %s' % file assert (l >= 0).all(), 'negative labels: %s' % file assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file self.labels[i] = l except: print('Warning: missing labels for %s' % self.img_files[i]) # missing label file assert len(np.concatenate(self.labels, 0)) > 0, 'No labels found. Incorrect label paths provided.' def __len__(self): return len(self.img_files) # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): if self.image_weights: index = self.indices[index] img_path = self.img_files[index] label_path = self.label_files[index] # Load image if hasattr(self, 'imgs'): # preloaded img = self.imgs[index] else: img = cv2.imread(img_path) # BGR assert img is not None, 'File Not Found ' + img_path # Augment colorspace augment_hsv = True if self.augment and augment_hsv: # SV augmentation by 50% fraction = 0.50 # must be < 1.0 img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val S = img_hsv[:, :, 1].astype(np.float32) # saturation V = img_hsv[:, :, 2].astype(np.float32) # value a = (random.random() * 2 - 1) * fraction + 1 b = (random.random() * 2 - 1) * fraction + 1 S *= a V *= b img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255) img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # Letterbox h, w, _ = img.shape if self.rect: shape = self.batch_shapes[self.batch[index]] img, ratio, padw, padh = letterbox(img, new_shape=shape, mode='rect') else: shape = int(self.multi_scale[self.batch[index]]) if hasattr(self, 'multi_scale') else self.img_size img, ratio, padw, padh = letterbox(img, new_shape=shape, mode='square') # Load labels labels = [] if os.path.isfile(label_path): # with open(label_path, 'r') as f: # x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) x = self.labels[index] if x.size > 0: # Normalized xywh to pixel xyxy format labels = x.copy() labels[:, 1] = ratio * w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = ratio * h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = ratio * w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = ratio * h * (x[:, 2] + x[:, 4] / 2) + padh # Augment image and labels if self.augment: img, labels = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.90, 1.10)) nL = len(labels) # number of labels if nL: # convert xyxy to xywh labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # Normalize coordinates 0 - 1 labels[:, [2, 4]] /= img.shape[0] # height labels[:, [1, 3]] /= img.shape[1] # width if self.augment: # random left-right flip lr_flip = True if lr_flip and random.random() > 0.5: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] # random up-down flip ud_flip = False if ud_flip and random.random() > 0.5: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Normalize img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return torch.from_numpy(img), labels_out, img_path, (h, w) @staticmethod def collate_fn(batch): img, label, path, hw = list(zip(*batch)) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, hw def letterbox(img, new_shape=416, color=(127.5, 127.5, 127.5), mode='auto'): # Resize a rectangular image to a 32 pixel multiple rectangle # https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): ratio = float(new_shape) / max(shape) else: ratio = max(new_shape) / max(shape) # ratio = new / old new_unpad = (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))) # Compute padding https://github.com/ultralytics/yolov3/issues/232 if mode is 'auto': # minimum rectangle dw = np.mod(new_shape - new_unpad[0], 32) / 2 # width padding dh = np.mod(new_shape - new_unpad[1], 32) / 2 # height padding elif mode is 'square': # square dw = (new_shape - new_unpad[0]) / 2 # width padding dh = (new_shape - new_unpad[1]) / 2 # height padding elif mode is 'rect': # square dw = (new_shape[1] - new_unpad[0]) / 2 # width padding dh = (new_shape[0] - new_unpad[1]) / 2 # height padding top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) # resized, no border img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded square return img, ratio, dw, dh def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2), borderValue=(127.5, 127.5, 127.5)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 if targets is None: targets = [] border = 0 # width of added border (optional) height = img.shape[0] + border * 2 width = img.shape[1] + border * 2 # Rotation and Scale R = np.eye(3) a = random.random() * (degrees[1] - degrees[0]) + degrees[0] # a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations s = random.random() * (scale[1] - scale[0]) + scale[0] R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # Translation T = np.eye(3) T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels) T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels) # Shear S = np.eye(3) S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg) M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!! imw = cv2.warpPerspective(img, M, dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=borderValue) # BGR order borderValue # Return warped points also if len(targets) > 0: n = targets.shape[0] points = targets[:, 1:5].copy() area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1]) # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = (xy @ M.T)[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # # apply angle-based reduction of bounding boxes # radians = a * math.pi / 180 # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 # x = (xy[:, 2] + xy[:, 0]) / 2 # y = (xy[:, 3] + xy[:, 1]) / 2 # w = (xy[:, 2] - xy[:, 0]) * reduction # h = (xy[:, 3] - xy[:, 1]) * reduction # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # reject warped points outside of image xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) w = xy[:, 2] - xy[:, 0] h = xy[:, 3] - xy[:, 1] area = w * h ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10) targets = targets[i] targets[:, 1:5] = xy[i] return imw, targets def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp') cv2.imwrite(save_name, cv2.imread(f)) for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: with open(label_path, 'r') as file: lines = file.read() lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace( '/Users/glennjocher/PycharmProjects/', '../') with open(label_path.replace('5k', '5k_bmp'), 'w') as file: file.write(lines)