import argparse from models import * from utils.datasets import * from utils.utils import * from utils import torch_utils def test( cfg, data_cfg, weights, batch_size=16, img_size=416, iou_thres=0.5, conf_thres=0.3, nms_thres=0.45 ): device = torch_utils.select_device() # Configure run data_cfg = parse_data_cfg(data_cfg) nC = int(data_cfg['classes']) # number of classes (80 for COCO) test_path = data_cfg['valid'] # Initialize model model = Darknet(cfg, img_size) # Load weights if weights.endswith('.pt'): # pytorch format model.load_state_dict(torch.load(weights, map_location='cpu')['model']) else: # darknet format load_darknet_weights(model, weights) model.to(device).eval() # Get dataloader # dataloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path), batch_size=batch_size) # pytorch dataloader = LoadImagesAndLabels(test_path, batch_size=batch_size, img_size=img_size) mean_mAP, mean_R, mean_P = 0.0, 0.0, 0.0 print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP')) outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class = [], [], [], [], [], [], [], [] AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC) for batch_i, (imgs, targets) in enumerate(dataloader): output = model(imgs.to(device)) output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres) # Compute average precision for each sample for sample_i, (labels, detections) in enumerate(zip(targets, output)): correct = [] if detections is None: # If there are no detections but there are labels mask as zero AP if labels.size(0) != 0: mAPs.append(0), mR.append(0), mP.append(0) continue # Get detections sorted by decreasing confidence scores detections = detections.cpu().numpy() detections = detections[np.argsort(-detections[:, 4])] # If no labels add number of detections as incorrect if labels.size(0) == 0: # correct.extend([0 for _ in range(len(detections))]) mAPs.append(0), mR.append(0), mP.append(0) continue else: target_cls = labels[:, 0] # Extract target boxes as (x1, y1, x2, y2) target_boxes = xywh2xyxy(labels[:, 1:5]) * img_size detected = [] for *pred_bbox, conf, obj_conf, obj_pred in detections: pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1) # Compute iou with target boxes iou = bbox_iou(pred_bbox, target_boxes) # Extract index of largest overlap best_i = np.argmax(iou) # If overlap exceeds threshold and classification is correct mark as correct if iou[best_i] > iou_thres and obj_pred == labels[best_i, 0] and best_i not in detected: correct.append(1) detected.append(best_i) else: correct.append(0) # Compute Average Precision (AP) per class AP, AP_class, R, P = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6], target_cls=target_cls) # Accumulate AP per class AP_accum_count += np.bincount(AP_class, minlength=nC) AP_accum += np.bincount(AP_class, minlength=nC, weights=AP) # Compute mean AP across all classes in this image, and append to image list mAPs.append(AP.mean()) mR.append(R.mean()) mP.append(P.mean()) # Means of all images mean_mAP = np.mean(mAPs) mean_R = np.mean(mR) mean_P = np.mean(mP) # Print image mAP and running mean mAP print(('%11s%11s' + '%11.3g' * 3) % (len(mAPs), dataloader.nF, mean_P, mean_R, mean_mAP)) # Print mAP per class print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:') classes = load_classes(data_cfg['names']) # Extracts class labels from file for i, c in enumerate(classes): print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i])) # Return mAP return mean_mAP, mean_R, mean_P if __name__ == '__main__': parser = argparse.ArgumentParser(prog='test.py') parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file') parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file') parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file') parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected') parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension') opt = parser.parse_args() print(opt, end='\n\n') with torch.no_grad(): mAP = test( opt.cfg, opt.data_cfg, opt.weights, opt.batch_size, opt.img_size, opt.iou_thres, opt.conf_thres, opt.nms_thres )