import argparse from models import * from utils.datasets import * from utils.utils import * parser = argparse.ArgumentParser() parser.add_argument('-batch_size', type=int, default=32, help='size of each image batch') parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file') parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='path to data config file') parser.add_argument('-weights_path', type=str, default='weights/yolov3.pt', help='path to weights file') parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file') parser.add_argument('-iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected') parser.add_argument('-conf_thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('-nms_thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') parser.add_argument('-n_cpu', type=int, default=0, help='number of cpu threads to use during batch generation') parser.add_argument('-img_size', type=int, default=416, help='size of each image dimension') opt = parser.parse_args() print(opt, end='\n\n') cuda = torch.cuda.is_available() device = torch.device('cuda:0' if cuda else 'cpu') def main(opt): # Configure run data_config = parse_data_config(opt.data_config_path) nC = int(data_config['classes']) # number of classes (80 for COCO) if platform == 'darwin': # MacOS (local) test_path = data_config['valid'] else: # linux (cloud, i.e. gcp) test_path = '../coco/5k.part' # Initiate model model = Darknet(opt.cfg, opt.img_size) # Load weights if opt.weights_path.endswith('.weights'): # darknet format load_weights(model, opt.weights_path) elif opt.weights_path.endswith('.pt'): # pytorch format checkpoint = torch.load(opt.weights_path, map_location='cpu') model.load_state_dict(checkpoint['model']) del checkpoint model.to(device).eval() # Get dataloader # dataset = load_images_with_labels(test_path) # dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) dataloader = load_images_and_labels(test_path, batch_size=opt.batch_size, img_size=opt.img_size) print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP')) outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class = [], [], [], [], [], [], [], [] AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC) for batch_i, (imgs, targets) in enumerate(dataloader): imgs = imgs.to(device) with torch.no_grad(): output = model(imgs) output = non_max_suppression(output, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres) # Compute average precision for each sample for sample_i in range(len(targets)): correct = [] # Get labels for sample where width is not zero (dummies) annotations = targets[sample_i] # Extract detections detections = output[sample_i] if detections is None: # If there are no detections but there are annotations mask as zero AP if annotations.size(0) != 0: mAPs.append(0) continue # Get detections sorted by decreasing confidence scores detections = detections[np.argsort(-detections[:, 4])] # If no annotations add number of detections as incorrect if annotations.size(0) == 0: # correct.extend([0 for _ in range(len(detections))]) mAPs.append(0) continue else: target_cls = annotations[:, 0] # Extract target boxes as (x1, y1, x2, y2) target_boxes = xywh2xyxy(annotations[:, 1:5]) target_boxes *= opt.img_size detected = [] for *pred_bbox, conf, obj_conf, obj_pred in detections: pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1) # Compute iou with target boxes iou = bbox_iou(pred_bbox, target_boxes) # Extract index of largest overlap best_i = np.argmax(iou) # If overlap exceeds threshold and classification is correct mark as correct if iou[best_i] > opt.iou_thres and obj_pred == annotations[best_i, 0] and best_i not in detected: correct.append(1) detected.append(best_i) else: correct.append(0) # Compute Average Precision (AP) per class AP, AP_class, R, P = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6], target_cls=target_cls) # Accumulate AP per class AP_accum_count += np.bincount(AP_class, minlength=nC) AP_accum += np.bincount(AP_class, minlength=nC, weights=AP) # Compute mean AP across all classes in this image, and append to image list mAPs.append(AP.mean()) mR.append(R.mean()) mP.append(P.mean()) # Means of all images mean_mAP = np.mean(mAPs) mean_R = np.mean(mR) mean_P = np.mean(mP) # Print image mAP and running mean mAP print(('%11s%11s' + '%11.3g' * 3) % (len(mAPs), len(dataloader) * opt.batch_size, mean_P, mean_R, mean_mAP)) # Print mAP per class print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:') classes = load_classes(opt.class_path) # Extracts class labels from file for i, c in enumerate(classes): print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i])) # Return mAP return mean_mAP, mean_R, mean_P if __name__ == '__main__': mAP = main(opt)