import glob import random from collections import defaultdict import cv2 import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from utils import torch_utils # Set printoptions torch.set_printoptions(linewidth=1320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) def float3(x): # format floats to 3 decimals return float(format(x, '.3f')) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch_utils.init_seeds(seed=seed) def load_classes(path): # Loads class labels at 'path' fp = open(path, 'r') names = fp.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def model_info(model): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients print('\n%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % ( i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) print('Model Summary: %g layers, %g parameters, %g gradients' % (i + 1, n_p, n_g)) def coco_class_weights(): # frequency of each class in coco train2014 weights = 1 / torch.FloatTensor( [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671, 6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689, 4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004, 5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933, 1877, 17630, 4337, 4624, 1075, 3468, 135, 1380]) weights /= weights.sum() return weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.03) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.03) torch.nn.init.constant_(m.bias.data, 0.0) def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 y[:, 1] = (x[:, 1] + x[:, 3]) / 2 y[:, 2] = x[:, 2] - x[:, 0] y[:, 3] = x[:, 3] - x[:, 1] return y def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x) y[:, 0] = (x[:, 0] - x[:, 2] / 2) y[:, 1] = (x[:, 1] - x[:, 3] / 2) y[:, 2] = (x[:, 0] + x[:, 2] / 2) y[:, 3] = (x[:, 1] + x[:, 3] / 2) return y def scale_coords(img_size, coords, img0_shape): # Rescale x1, y1, x2, y2 from 416 to image size gain = float(img_size) / max(img0_shape) # gain = old / new pad_x = (img_size - img0_shape[1] * gain) / 2 # width padding pad_y = (img_size - img0_shape[0] * gain) / 2 # height padding coords[:, [0, 2]] -= pad_x coords[:, [1, 3]] -= pad_y coords[:, :4] /= gain coords[:, :4] = torch.clamp(coords[:, :4], min=0) return coords def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (list). conf: Objectness value from 0-1 (list). pred_cls: Predicted object classes (list). target_cls: True object classes (list). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0)) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = sum(target_cls == c) # Number of ground truth objects n_p = sum(i) # Number of predicted objects if (n_p == 0) and (n_gt == 0): continue elif (n_p == 0) or (n_gt == 0): ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = np.cumsum(1 - tp[i]) tpc = np.cumsum(tp[i]) # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(tpc[-1] / (n_gt + 1e-16)) # Precision precision_curve = tpc / (tpc + fpc) p.append(tpc[-1] / (tpc[-1] + fpc[-1])) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p) def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def bbox_iou(box1, box2, x1y1x2y2=True): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # x, y, w, h = box1 b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \ (b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area return inter_area / union_area # iou def wh_iou(box1, box2): # Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2 box2 = box2.t() # w, h = box1 w1, h1 = box1[0], box1[1] w2, h2 = box2[0], box2[1] # Intersection area inter_area = torch.min(w1, w2) * torch.min(h1, h2) # Union Area union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area return inter_area / union_area # iou def compute_loss(p, targets): # predictions, targets FT = torch.cuda.FloatTensor if p[0].is_cuda else torch.FloatTensor loss, lxy, lwh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0]) txy, twh, tcls, tconf, indices = targets MSE = nn.MSELoss() CE = nn.CrossEntropyLoss() BCE = nn.BCEWithLogitsLoss() # Compute losses # gp = [x.numel() for x in tconf] # grid points for i, pi0 in enumerate(p): # layer i predictions, i b, a, gj, gi = indices[i] # image, anchor, gridx, gridy # Compute losses k = 1 # nT / bs if len(b) > 0: pi = pi0[b, a, gj, gi] # predictions closest to anchors lxy += k * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy lwh += k * MSE(pi[..., 2:4], twh[i]) # wh lcls += (k / 4) * CE(pi[..., 5:], tcls[i]) # pos_weight = FT([gp[i] / min(gp) * 4.]) # BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight) lconf += (k * 64) * BCE(pi0[..., 4], tconf[i]) loss = lxy + lwh + lconf + lcls # Add to dictionary d = defaultdict(float) losses = [loss.item(), lxy.item(), lwh.item(), lconf.item(), lcls.item()] for name, x in zip(['total', 'xy', 'wh', 'conf', 'cls'], losses): d[name] = x return loss, d def build_targets(model, targets, pred): # targets = [image, class, x, y, w, h] if isinstance(model, nn.DataParallel): model = model.module yolo_layers = get_yolo_layers(model) # anchors = closest_anchor(model, targets) # [layer, anchor, i, j] txy, twh, tcls, tconf, indices = [], [], [], [], [] for i, layer in enumerate(yolo_layers): nG = model.module_list[layer][0].nG # grid size anchor_vec = model.module_list[layer][0].anchor_vec # iou of targets-anchors gwh = targets[:, 4:6] * nG iou = [wh_iou(x, gwh) for x in anchor_vec] iou, a = torch.stack(iou, 0).max(0) # best iou and anchor # reject below threshold ious (OPTIONAL) reject = True if reject: j = iou > 0.01 t, a, gwh = targets[j], a[j], gwh[j] else: t = targets # Indices b, c = t[:, 0:2].long().t() # target image, class gxy = t[:, 2:4] * nG gi, gj = gxy.long().t() # grid_i, grid_j indices.append((b, a, gj, gi)) # XY coordinates txy.append(gxy - gxy.floor()) # Width and height twh.append(torch.log(gwh / anchor_vec[a])) # yolo method # twh.append(torch.sqrt(gwh / anchor_vec[a]) / 2) # power method # Class tcls.append(c) # Conf tci = torch.zeros_like(pred[i][..., 0]) tci[b, a, gj, gi] = 1 # conf tconf.append(tci) return txy, twh, tcls, tconf, indices def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): """ Removes detections with lower object confidence score than 'conf_thres' Non-Maximum Suppression to further filter detections. Returns detections with shape: (x1, y1, x2, y2, object_conf, class_score, class_pred) """ output = [None for _ in range(len(prediction))] for image_i, pred in enumerate(prediction): # Experiment: Prior class size rejection # x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3] # a = w * h # area # ar = w / (h + 1e-16) # aspect ratio # n = len(w) # log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar) # shape_likelihood = np.zeros((n, 60), dtype=np.float32) # x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1) # from scipy.stats import multivariate_normal # for c in range(60): # shape_likelihood[:, c] = # multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2]) # Filter out confidence scores below threshold class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1) v = pred[:, 4] > conf_thres v = v.nonzero().squeeze() if len(v.shape) == 0: v = v.unsqueeze(0) pred = pred[v] class_prob = class_prob[v] class_pred = class_pred[v] # If none are remaining => process next image nP = pred.shape[0] if not nP: continue # From (center x, center y, width, height) to (x1, y1, x2, y2) pred[:, :4] = xywh2xyxy(pred[:, :4]) # Detections ordered as (x1, y1, x2, y2, obj_conf, class_prob, class_pred) detections = torch.cat((pred[:, :5], class_prob.float().unsqueeze(1), class_pred.float().unsqueeze(1)), 1) # Iterate through all predicted classes unique_labels = detections[:, -1].cpu().unique().to(prediction.device) nms_style = 'OR' # 'OR' (default), 'AND', 'MERGE' (experimental) for c in unique_labels: # Get the detections with class c dc = detections[detections[:, -1] == c] # Sort the detections by maximum object confidence _, conf_sort_index = torch.sort(dc[:, 4] * dc[:, 5], descending=True) dc = dc[conf_sort_index] # Non-maximum suppression det_max = [] ind = list(range(len(dc))) if nms_style == 'OR': # default while len(ind): j = ind[0] det_max.append(dc[j:j + 1]) # save highest conf detection reject = bbox_iou(dc[j], dc[ind]) > nms_thres [ind.pop(i) for i in reversed(reject.nonzero())] # while dc.shape[0]: # SLOWER METHOD # det_max.append(dc[:1]) # save highest conf detection # if len(dc) == 1: # Stop if we're at the last detection # break # iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes # dc = dc[1:][iou < nms_thres] # remove ious > threshold # Image Total P R mAP # 4964 5000 0.629 0.594 0.586 elif nms_style == 'AND': # requires overlap, single boxes erased while len(dc) > 1: iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes if iou.max() > 0.5: det_max.append(dc[:1]) dc = dc[1:][iou < nms_thres] # remove ious > threshold elif nms_style == 'MERGE': # weighted mixture box while len(dc) > 0: iou = bbox_iou(dc[0], dc[0:]) # iou with other boxes i = iou > nms_thres weights = dc[i, 4:5] * dc[i, 5:6] dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum() det_max.append(dc[:1]) dc = dc[iou < nms_thres] # Image Total P R mAP # 4964 5000 0.633 0.598 0.589 # normal if len(det_max) > 0: det_max = torch.cat(det_max) # Add max detections to outputs output[image_i] = det_max if output[image_i] is None else torch.cat((output[image_i], det_max)) return output def get_yolo_layers(model): bool_vec = [x['type'] == 'yolo' for x in model.module_defs] return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3 def return_torch_unique_index(u, uv): n = uv.shape[1] # number of columns first_unique = torch.zeros(n, device=u.device).long() for j in range(n): first_unique[j] = (uv[:, j:j + 1] == u).all(0).nonzero()[0] return first_unique def strip_optimizer_from_checkpoint(filename='weights/best.pt'): # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) a = torch.load(filename, map_location='cpu') a['optimizer'] = [] torch.save(a, filename.replace('.pt', '_lite.pt')) def coco_class_count(path='../coco/labels/train2014/'): # Histogram of occurrences per class nC = 80 # number classes x = np.zeros(nC, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nC) print(i, len(files)) def coco_only_people(path='../coco/labels/val2014/'): # Find images with only people files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) if all(labels[:, 0] == 0): print(labels.shape[0], file) def plot_results(start=0): # Plot YOLO training results file 'results.txt' # import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt') # from utils.utils import *; plot_results() plt.figure(figsize=(14, 7)) s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP'] files = sorted(glob.glob('results*.txt')) for f in files: results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP x = range(1, results.shape[1]) for i in range(8): plt.subplot(2, 4, i + 1) plt.plot(results[i, x[start:]], marker='.', label=f) plt.title(s[i]) if i == 0: plt.legend()