# Start from Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch FROM nvcr.io/nvidia/pytorch:19.08-py3 # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents COPY . /usr/src/app # Install dependencies (pip or conda) # RUN pip install -U -r requirements.txt # RUN conda update -n base -c defaults conda # RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow # RUN conda install -y -c conda-forge scikit-image tensorboard pycocotools # conda install pytorch torchvision -c pytorch # Install OpenCV with Gstreamer support # ... # Move model into container # RUN mv yolov3-spp.pt ./weights # --------------------------------------------------- Extras Below --------------------------------------------------- # Build container # rm -rf yolov3 # Warning: remove existing # git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 detect.py # sudo docker image prune -af && sudo docker build -t ultralytics/yolov3:v0 . # Run container # sudo nvidia-docker run --ipc=host ultralytics/yolov3:v0 python3 detect.py # Run container accesing local directory # sudo nvidia-docker run --ipc=host --mount type=bind,source="$(pwd)"/coco,target=/usr/src/coco ultralytics/yolov3:v0 python3 train.py # Push container to https://hub.docker.com/u/ultralytics # docker push ultralytics/yolov3:v0