import random import cv2 import numpy as np import torch import torch.nn.functional as F from utils import torch_utils # Set printoptions torch.set_printoptions(linewidth=1320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch_utils.init_seeds(seed=seed) def load_classes(path): """ Loads class labels at 'path' """ fp = open(path, 'r') names = fp.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def model_info(model): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients print('\n%5s %50s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %50s %9s %12g %20s %12.3g %12.3g' % ( i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) print('Model Summary: %g layers, %g parameters, %g gradients\n' % (i + 1, n_p, n_g)) def class_weights(): # frequency of each class in coco train2014 weights = 1 / torch.FloatTensor( [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671, 6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689, 4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004, 5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933, 1877, 17630, 4337, 4624, 1075, 3468, 135, 1380]) weights /= weights.sum() return weights def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.03) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.03) torch.nn.init.constant_(m.bias.data, 0.0) def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 y[:, 1] = (x[:, 1] + x[:, 3]) / 2 y[:, 2] = x[:, 2] - x[:, 0] y[:, 3] = x[:, 3] - x[:, 1] return y def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape) y[:, 0] = (x[:, 0] - x[:, 2] / 2) y[:, 1] = (x[:, 1] - x[:, 3] / 2) y[:, 2] = (x[:, 0] + x[:, 2] / 2) y[:, 3] = (x[:, 1] + x[:, 3] / 2) return y def scale_coords(img_size, coords, img0_shape): # Rescale x1, y1, x2, y2 from 416 to image size gain = float(img_size) / max(img0_shape) # gain = old / new pad_x = (img_size - img0_shape[1] * gain) / 2 # width padding pad_y = (img_size - img0_shape[0] * gain) / 2 # height padding coords[:, [0, 2]] -= pad_x coords[:, [1, 3]] -= pad_y coords[:, :4] /= gain coords[:, :4] = torch.round(torch.clamp(coords[:, :4], min=0)) return coords def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (list). conf: Objectness value from 0-1 (list). pred_cls: Predicted object classes (list). target_cls: True object classes (list). # Returns The average precision as computed in py-faster-rcnn. """ # lists/pytorch to numpy tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(pred_cls), np.array(target_cls) # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0)) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = sum(target_cls == c) # Number of ground truth objects n_p = sum(i) # Number of predicted objects if (n_p == 0) and (n_gt == 0): continue elif (n_p == 0) or (n_gt == 0): ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = np.cumsum(1 - tp[i]) tpc = np.cumsum(tp[i]) # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(tpc[-1] / (n_gt + 1e-16)) # Precision precision_curve = tpc / (tpc + fpc) p.append(tpc[-1] / (tpc[-1] + fpc[-1])) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p) def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def bbox_iou(box1, box2, x1y1x2y2=True): """ Returns the IoU of two bounding boxes """ if x1y1x2y2: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] else: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) return inter_area / (b1_area + b2_area - inter_area + 1e-16) def build_targets(target, anchor_wh, nA, nC, nG): """ returns nT, nCorrect, tx, ty, tw, th, tconf, tcls """ nB = len(target) # number of images in batch nT = [len(x) for x in target] # torch.argmin(target[:, :, 4], 1) # targets per image tx = torch.zeros(nB, nA, nG, nG) # batch size (4), number of anchors (3), number of grid points (13) ty = torch.zeros(nB, nA, nG, nG) tw = torch.zeros(nB, nA, nG, nG) th = torch.zeros(nB, nA, nG, nG) tconf = torch.ByteTensor(nB, nA, nG, nG).fill_(0) tcls = torch.ByteTensor(nB, nA, nG, nG, nC).fill_(0) # nC = number of classes for b in range(nB): nTb = nT[b] # number of targets if nTb == 0: continue t = target[b] # Convert to position relative to box gx, gy, gw, gh = t[:, 1] * nG, t[:, 2] * nG, t[:, 3] * nG, t[:, 4] * nG # Get grid box indices and prevent overflows (i.e. 13.01 on 13 anchors) gi = torch.clamp(gx.long(), min=0, max=nG - 1) gj = torch.clamp(gy.long(), min=0, max=nG - 1) # iou of targets-anchors (using wh only) box1 = t[:, 3:5] * nG box2 = anchor_wh.unsqueeze(1) inter_area = torch.min(box1, box2).prod(2) iou = inter_area / (gw * gh + box2.prod(2) - inter_area + 1e-16) # Select best iou_pred and anchor iou_best, a = iou.max(0) # best anchor [0-2] for each target # Select best unique target-anchor combinations if nTb > 1: iou_order = torch.argsort(-iou_best) # best to worst # Unique anchor selection u = torch.cat((gi, gj, a), 0).view((3, -1)) _, first_unique = np.unique(u[:, iou_order], axis=1, return_index=True) # first unique indices # _, first_unique = torch.unique(u[:, iou_order], dim=1, return_inverse=True) # different than numpy? i = iou_order[first_unique] # best anchor must share significant commonality (iou) with target i = i[iou_best[i] > 0.10] if len(i) == 0: continue a, gj, gi, t = a[i], gj[i], gi[i], t[i] if len(t.shape) == 1: t = t.view(1, 5) else: if iou_best < 0.10: continue tc, gx, gy, gw, gh = t[:, 0].long(), t[:, 1] * nG, t[:, 2] * nG, t[:, 3] * nG, t[:, 4] * nG # Coordinates tx[b, a, gj, gi] = gx - gi.float() ty[b, a, gj, gi] = gy - gj.float() # Width and height (yolo method) tw[b, a, gj, gi] = torch.log(gw / anchor_wh[a, 0]) th[b, a, gj, gi] = torch.log(gh / anchor_wh[a, 1]) # Width and height (power method) # tw[b, a, gj, gi] = torch.sqrt(gw / anchor_wh[a, 0]) / 2 # th[b, a, gj, gi] = torch.sqrt(gh / anchor_wh[a, 1]) / 2 # One-hot encoding of label tcls[b, a, gj, gi, tc] = 1 tconf[b, a, gj, gi] = 1 return tx, ty, tw, th, tconf, tcls def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): """ Removes detections with lower object confidence score than 'conf_thres' Non-Maximum Suppression to further filter detections. Returns detections with shape: (x1, y1, x2, y2, object_conf, class_score, class_pred) """ output = [None for _ in range(len(prediction))] for image_i, pred in enumerate(prediction): # Filter out confidence scores below threshold # Get score and class with highest confidence # cross-class NMS (experimental) cross_class_nms = False if cross_class_nms: a = pred.clone() _, indices = torch.sort(-a[:, 4], 0) # sort best to worst a = a[indices] radius = 30 # area to search for cross-class ious for i in range(len(a)): if i >= len(a) - 1: break close = (torch.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (torch.abs(a[i, 1] - a[i + 1:, 1]) < radius) close = close.nonzero() if len(close) > 0: close = close + i + 1 iou = bbox_iou(a[i:i + 1, :4], a[close.squeeze(), :4].reshape(-1, 4), x1y1x2y2=False) bad = close[iou > nms_thres] if len(bad) > 0: mask = torch.ones(len(a)).type(torch.ByteTensor) mask[bad] = 0 a = a[mask] pred = a # Experiment: Prior class size rejection # x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3] # a = w * h # area # ar = w / (h + 1e-16) # aspect ratio # n = len(w) # log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar) # shape_likelihood = np.zeros((n, 60), dtype=np.float32) # x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1) # from scipy.stats import multivariate_normal # for c in range(60): # shape_likelihood[:, c] = # multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2]) class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1) v = ((pred[:, 4] > conf_thres) & (class_prob > .3)) # TODO examine arbitrary 0.3 thres here v = v.nonzero().squeeze() if len(v.shape) == 0: v = v.unsqueeze(0) pred = pred[v] class_prob = class_prob[v] class_pred = class_pred[v] # If none are remaining => process next image nP = pred.shape[0] if not nP: continue # From (center x, center y, width, height) to (x1, y1, x2, y2) pred[:, :4] = xywh2xyxy(pred[:, :4]) # Detections ordered as (x1, y1, x2, y2, obj_conf, class_prob, class_pred) detections = torch.cat((pred[:, :5], class_prob.float().unsqueeze(1), class_pred.float().unsqueeze(1)), 1) # Iterate through all predicted classes unique_labels = detections[:, -1].cpu().unique() if prediction.is_cuda: unique_labels = unique_labels.cuda(prediction.device) nms_style = 'MERGE' # 'OR' (default), 'AND', 'MERGE' (experimental) for c in unique_labels: # Get the detections with class c dc = detections[detections[:, -1] == c] # Sort the detections by maximum object confidence _, conf_sort_index = torch.sort(dc[:, 4], descending=True) dc = dc[conf_sort_index] # Non-maximum suppression det_max = [] if nms_style == 'OR': # default while dc.shape[0]: det_max.append(dc[:1]) # save highest conf detection if len(dc) == 1: # Stop if we're at the last detection break iou = bbox_iou(det_max[-1], dc[1:]) # iou with other boxes dc = dc[1:][iou < nms_thres] # remove ious > threshold # Image Total P R mAP # 5000 5000 0.627 0.593 0.584 elif nms_style == 'AND': # requires overlap, single boxes erased while len(dc) > 1: iou = bbox_iou(dc[:1], dc[1:]) # iou with other boxes if iou.max() > 0.5: det_max.append(dc[:1]) dc = dc[1:][iou < nms_thres] # remove ious > threshold elif nms_style == 'MERGE': # weighted mixture box while len(dc) > 0: iou = bbox_iou(dc[:1], dc[0:]) # iou with other boxes i = iou > .6 weights = dc[i, 4:5] * dc[i, 5:6] dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum() det_max.append(dc[:1]) dc = dc[iou < .6] # Image Total P R mAP # 4964 5000 0.632 0.597 0.588 # normal # 4964 5000 0.632 0.597 0.588 # squared # 4964 5000 0.631 0.597 0.588 # sqrt if len(det_max) > 0: det_max = torch.cat(det_max) # Add max detections to outputs output[image_i] = det_max if output[image_i] is None else torch.cat((output[image_i], det_max)) return output def strip_optimizer_from_checkpoint(filename='weights/best.pt'): # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) import torch a = torch.load(filename, map_location='cpu') a['optimizer'] = [] torch.save(a, filename.replace('.pt', '_lite.pt')) def coco_class_count(path='../coco/labels/train2014/'): # histogram of occurrences per class import glob nC = 80 # number classes x = np.zeros(nC, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nC) print(i, len(files)) def plot_results(): # Plot YOLO training results file 'results.txt' import glob import matplotlib.pyplot as plt import numpy as np # import os; os.system('rm -rf results.txt && wget https://storage.googleapis.com/ultralytics/results_v1_0.txt') plt.figure(figsize=(16, 8)) s = ['X', 'Y', 'Width', 'Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision'] files = sorted(glob.glob('results*.txt')) for f in files: results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 11, 12, 13]).T # column 13 is mAP n = results.shape[1] for i in range(10): plt.subplot(2, 5, i + 1) plt.plot(range(1, n), results[i, 1:], marker='.', label=f) plt.title(s[i]) if i == 0: plt.legend()