import argparse from models import * # set ONNX_EXPORT in models.py from utils.datasets import * from utils.utils import * def detect(save_img=False): img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width) out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') # Initialize device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device) if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Initialize model model = Darknet(opt.cfg, img_size) # Load weights attempt_download(weights) if weights.endswith('.pt'): # pytorch format model.load_state_dict(torch.load(weights, map_location=device)['model']) else: # darknet format load_darknet_weights(model, weights) # Second-stage classifier classify = False if classify: modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval() # Eval mode model.to(device).eval() # Fuse Conv2d + BatchNorm2d layers # model.fuse() # Export mode if ONNX_EXPORT: model.fuse() img = torch.zeros((1, 3) + img_size) # (1, 3, 320, 192) f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename torch.onnx.export(model, img, f, verbose=False, opset_version=11, input_names=['images'], output_names=['classes', 'boxes']) # Validate exported model import onnx model = onnx.load(f) # Load the ONNX model onnx.checker.check_model(model) # Check that the IR is well formed print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph return # Half precision half = half and device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=img_size) else: save_img = True dataset = LoadImages(source, img_size=img_size) # Get names and colors names = load_classes(opt.names) colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # Run inference t0 = time.time() img = torch.zeros((1, 3, img_size, img_size), device=device) # init img _ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = torch_utils.time_synchronized() pred = model(img, augment=opt.augment)[0] t2 = torch_utils.time_synchronized() # to float if half: pred = pred.float() # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms) # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections for image i if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i] else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0s.shape)[[1, 0, 1, 0]] #  normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in det: if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: print('Results saved to %s' % os.getcwd() + os.sep + out) if platform == 'darwin': # MacOS os.system('open ' + save_path) print('Done. (%.3fs)' % (time.time() - t0)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path') parser.add_argument('--names', type=str, default='data/coco.names', help='*.names path') parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path') parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam parser.add_argument('--output', type=str, default='output', help='output folder') # output folder parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS') parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser.add_argument('--half', action='store_true', help='half precision FP16 inference') parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--classes', nargs='+', type=int, help='filter by class') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') opt = parser.parse_args() print(opt) with torch.no_grad(): detect()