from collections import defaultdict import torch.nn as nn from utils.utils import * from utils.parse_config import * def create_modules(module_defs): """ Constructs module list of layer blocks from module configuration in module_defs """ hyperparams = module_defs.pop(0) output_filters = [int(hyperparams['channels'])] module_list = nn.ModuleList() for i, module_def in enumerate(module_defs): modules = nn.Sequential() if module_def['type'] == 'convolutional': bn = int(module_def['batch_normalize']) filters = int(module_def['filters']) kernel_size = int(module_def['size']) pad = (kernel_size - 1) // 2 if int(module_def['pad']) else 0 modules.add_module('conv_%d' % i, nn.Conv2d(in_channels=output_filters[-1], out_channels=filters, kernel_size=kernel_size, stride=int(module_def['stride']), padding=pad, bias=not bn)) if bn: modules.add_module('batch_norm_%d' % i, nn.BatchNorm2d(filters)) if module_def['activation'] == 'leaky': modules.add_module('leaky_%d' % i, nn.LeakyReLU(0.1)) elif module_def['type'] == 'upsample': upsample = nn.Upsample(scale_factor=int(module_def['stride']), mode='nearest') modules.add_module('upsample_%d' % i, upsample) elif module_def['type'] == 'route': layers = [int(x) for x in module_def["layers"].split(',')] filters = sum([output_filters[layer_i] for layer_i in layers]) modules.add_module('route_%d' % i, EmptyLayer()) elif module_def['type'] == 'shortcut': filters = output_filters[int(module_def['from'])] modules.add_module("shortcut_%d" % i, EmptyLayer()) elif module_def["type"] == "yolo": anchor_idxs = [int(x) for x in module_def["mask"].split(",")] # Extract anchors anchors = [float(x) for x in module_def["anchors"].split(",")] anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)] anchors = [anchors[i] for i in anchor_idxs] num_classes = int(module_def['classes']) img_height = int(hyperparams['height']) # Define detection layer yolo_layer = YOLOLayer(anchors, num_classes, img_height, anchor_idxs) modules.add_module('yolo_%d' % i, yolo_layer) # Register module list and number of output filters module_list.append(modules) output_filters.append(filters) return hyperparams, module_list class EmptyLayer(nn.Module): """Placeholder for 'route' and 'shortcut' layers""" def __init__(self): super(EmptyLayer, self).__init__() class YOLOLayer(nn.Module): # YOLO Layer 0 def __init__(self, anchors, nC, img_dim, anchor_idxs): super(YOLOLayer, self).__init__() anchors = [(a_w, a_h) for a_w, a_h in anchors] # (pixels) nA = len(anchors) self.anchors = anchors self.nA = nA # number of anchors (3) self.nC = nC # number of classes (80) self.bbox_attrs = 5 + nC self.img_dim = img_dim # from hyperparams in cfg file, NOT from parser if anchor_idxs[0] == (nA * 2): # 6 stride = 32 elif anchor_idxs[0] == nA: # 3 stride = 16 else: stride = 8 # Build anchor grids nG = int(self.img_dim / stride) self.grid_x = torch.arange(nG).repeat(nG, 1).view([1, 1, nG, nG]).float() self.grid_y = torch.arange(nG).repeat(nG, 1).t().view([1, 1, nG, nG]).float() self.scaled_anchors = torch.FloatTensor([(a_w / stride, a_h / stride) for a_w, a_h in anchors]) self.anchor_w = self.scaled_anchors[:, 0:1].view((1, nA, 1, 1)) self.anchor_h = self.scaled_anchors[:, 1:2].view((1, nA, 1, 1)) def forward(self, p, targets=None, requestPrecision=False, epoch=None): FT = torch.cuda.FloatTensor if p.is_cuda else torch.FloatTensor bs = p.shape[0] nG = p.shape[2] stride = self.img_dim / nG if p.is_cuda and not self.grid_x.is_cuda: self.grid_x, self.grid_y = self.grid_x.cuda(), self.grid_y.cuda() self.anchor_w, self.anchor_h = self.anchor_w.cuda(), self.anchor_h.cuda() # x.view(4, 650, 19, 19) -- > (4, 10, 19, 19, 65) # (bs, anchors, grid, grid, classes + xywh) p = p.view(bs, self.nA, self.bbox_attrs, nG, nG).permute(0, 1, 3, 4, 2).contiguous() # prediction # Get outputs x = torch.sigmoid(p[..., 0]) # Center x y = torch.sigmoid(p[..., 1]) # Center y w = p[..., 2] # Width h = p[..., 3] # Height width = torch.exp(w.data) * self.anchor_w height = torch.exp(h.data) * self.anchor_h # Add offset and scale with anchors (in grid space, i.e. 0-13) pred_boxes = FT(bs, self.nA, nG, nG, 4) pred_conf = p[..., 4] # Conf pred_cls = p[..., 5:] # Class # Training if targets is not None: BCEWithLogitsLoss1 = nn.BCEWithLogitsLoss(size_average=False) BCEWithLogitsLoss2 = nn.BCEWithLogitsLoss(size_average=True) MSELoss = nn.MSELoss(size_average=False) # version 0.4.0 CrossEntropyLoss = nn.CrossEntropyLoss() if requestPrecision: gx = self.grid_x[:, :, :nG, :nG] gy = self.grid_y[:, :, :nG, :nG] pred_boxes[..., 0] = x.data + gx - width / 2 pred_boxes[..., 1] = y.data + gy - height / 2 pred_boxes[..., 2] = x.data + gx + width / 2 pred_boxes[..., 3] = y.data + gy + height / 2 tx, ty, tw, th, mask, tcls, TP, FP, FN, TC = \ build_targets(pred_boxes, pred_conf, pred_cls, targets, self.scaled_anchors, self.nA, self.nC, nG, requestPrecision) tcls = tcls[mask] if x.is_cuda: tx, ty, tw, th, mask, tcls = tx.cuda(), ty.cuda(), tw.cuda(), th.cuda(), mask.cuda(), tcls.cuda() # Mask outputs to ignore non-existing objects (but keep confidence predictions) nM = mask.sum().float() nGT = sum([len(x) for x in targets]) if nM > 0: lx = 5 * MSELoss(x[mask], tx[mask]) ly = 5 * MSELoss(y[mask], ty[mask]) lw = 5 * MSELoss(w[mask], tw[mask]) lh = 5 * MSELoss(h[mask], th[mask]) lconf = 1.5 * BCEWithLogitsLoss1(pred_conf[mask], mask[mask].float()) lcls = nM * CrossEntropyLoss(pred_cls[mask], torch.argmax(tcls, 1)) # lcls = BCEWithLogitsLoss1(pred_cls[mask], tcls.float()) else: lx, ly, lw, lh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0]), FT([0]) lconf += nM * BCEWithLogitsLoss2(pred_conf[~mask], mask[~mask].float()) loss = lx + ly + lw + lh + lconf + lcls i = torch.sigmoid(pred_conf[~mask]) > 0.99 FPe = torch.zeros(self.nC) if i.sum() > 0: FP_classes = torch.argmax(pred_cls[~mask][i], 1) for c in FP_classes: FPe[c] += 1 return loss, loss.item(), lx.item(), ly.item(), lw.item(), lh.item(), lconf.item(), lcls.item(), \ nGT, TP, FP, FPe, FN, TC else: pred_boxes[..., 0] = x.data + self.grid_x pred_boxes[..., 1] = y.data + self.grid_y pred_boxes[..., 2] = width pred_boxes[..., 3] = height # If not in training phase return predictions output = torch.cat((pred_boxes.view(bs, -1, 4) * stride, torch.sigmoid(pred_conf.view(bs, -1, 1)), pred_cls.view(bs, -1, self.nC)), -1) return output.data class Darknet(nn.Module): """YOLOv3 object detection model""" def __init__(self, config_path, img_size=416): super(Darknet, self).__init__() self.module_defs = parse_model_config(config_path) self.module_defs[0]['height'] = img_size self.hyperparams, self.module_list = create_modules(self.module_defs) self.img_size = img_size self.loss_names = ['loss', 'x', 'y', 'w', 'h', 'conf', 'cls', 'nGT', 'TP', 'FP', 'FPe', 'FN', 'TC'] def forward(self, x, targets=None, requestPrecision=False, epoch=None): is_training = targets is not None output = [] self.losses = defaultdict(float) layer_outputs = [] for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)): if module_def['type'] in ['convolutional', 'upsample']: x = module(x) elif module_def['type'] == 'route': layer_i = [int(x) for x in module_def['layers'].split(',')] x = torch.cat([layer_outputs[i] for i in layer_i], 1) elif module_def['type'] == 'shortcut': layer_i = int(module_def['from']) x = layer_outputs[-1] + layer_outputs[layer_i] elif module_def['type'] == 'yolo': # Train phase: get loss if is_training: x, *losses = module[0](x, targets, requestPrecision, epoch) for name, loss in zip(self.loss_names, losses): self.losses[name] += loss # Test phase: Get detections else: x = module(x) output.append(x) layer_outputs.append(x) if is_training: self.losses['nGT'] /= 3 self.losses['TC'] /= 3 metrics = torch.zeros(4, len(self.losses['FPe'])) # TP, FP, FN, target_count ui = np.unique(self.losses['TC'])[1:] for i in ui: j = self.losses['TC'] == float(i) metrics[0, i] = (self.losses['TP'][j] > 0).sum().float() # TP metrics[1, i] = (self.losses['FP'][j] > 0).sum().float() # FP metrics[2, i] = (self.losses['FN'][j] == 3).sum().float() # FN metrics[3] = metrics.sum(0) metrics[1] += self.losses['FPe'] self.losses['TP'] = metrics[0].sum() self.losses['FP'] = metrics[1].sum() self.losses['FN'] = metrics[2].sum() self.losses['TC'] = 0 self.losses['metrics'] = metrics return sum(output) if is_training else torch.cat(output, 1) def load_weights(self, weights_path): """Parses and loads the weights stored in 'weights_path'""" # Open the weights file fp = open(weights_path, "rb") header = np.fromfile(fp, dtype=np.int32, count=5) # First five are header values # Needed to write header when saving weights self.header_info = header self.seen = header[3] weights = np.fromfile(fp, dtype=np.float32) # The rest are weights fp.close() ptr = 0 for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)): if module_def['type'] == 'convolutional': conv_layer = module[0] if module_def['batch_normalize']: # Load BN bias, weights, running mean and running variance bn_layer = module[1] num_b = bn_layer.bias.numel() # Number of biases # Bias bn_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.bias) bn_layer.bias.data.copy_(bn_b) ptr += num_b # Weight bn_w = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.weight) bn_layer.weight.data.copy_(bn_w) ptr += num_b # Running Mean bn_rm = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_mean) bn_layer.running_mean.data.copy_(bn_rm) ptr += num_b # Running Var bn_rv = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_var) bn_layer.running_var.data.copy_(bn_rv) ptr += num_b else: # Load conv. bias num_b = conv_layer.bias.numel() conv_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(conv_layer.bias) conv_layer.bias.data.copy_(conv_b) ptr += num_b # Load conv. weights num_w = conv_layer.weight.numel() conv_w = torch.from_numpy(weights[ptr:ptr + num_w]).view_as(conv_layer.weight) conv_layer.weight.data.copy_(conv_w) ptr += num_w """ @:param path - path of the new weights file @:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved) """ def save_weights(self, path, cutoff=-1): fp = open(path, 'wb') self.header_info[3] = self.seen self.header_info.tofile(fp) # Iterate through layers for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])): if module_def['type'] == 'convolutional': conv_layer = module[0] # If batch norm, load bn first if module_def['batch_normalize']: bn_layer = module[1] bn_layer.bias.data.cpu().numpy().tofile(fp) bn_layer.weight.data.cpu().numpy().tofile(fp) bn_layer.running_mean.data.cpu().numpy().tofile(fp) bn_layer.running_var.data.cpu().numpy().tofile(fp) # Load conv bias else: conv_layer.bias.data.cpu().numpy().tofile(fp) # Load conv weights conv_layer.weight.data.cpu().numpy().tofile(fp) fp.close()