train: epochs: 600 batch-size: 8 cfg: ./cfg/yolov3-spp-19cls.cfg data: ./data/widok_01_19.data multi-scale: false img-size: '512 960' rect: false resume: true nosave: false notest: false evolve: false bucket: cache-images: false weights: /home/tomekb/yolov3/weights/last.pt device: 1 adam: true single-cls: false # inne hiperparametry other-hyps: giou: 3.53 # giou loss gain cls: 37.4 # cls loss gain cls_pw: 1.0 # cls BCELoss positive_weight obj: 64.3 # obj loss gain (*=img_size/320 if img_size != 320) obj_pw: 1.0 # obj BCELoss positive_weight iou_t: 0.20 # iou training threshold lr0: 0.01 # initial learning rate (SGD=5E-3 Adam=5E-4) lrf: 0.0005 # final learning rate (with cos scheduler) momentum: 0.937 # SGD momentum weight_decay: 0.0005 # optimizer weight decay fl_gamma: 0.0 # focal loss gamma (efficientDet default is gamma=1.5) hsv_h: 0.0138 # image HSV-Hue augmentation (fraction) hsv_s: 0.678 # image HSV-Saturation augmentation (fraction) hsv_v: 0.36 # image HSV-Value augmentation (fraction) degrees: 0 # 1.98 * 0 # image rotation (+/- deg) translate: 0 # 0.05 * 0 # image translation (+/- fraction) scale: 0 #0 .05 * 0 # image scale (+/- gain) shear: 0 # 0.641 * 0 # image shear (+/- deg) experiments: dir: ./experiments detect: source: /home/tomekb/yolov3/data/widok_01_19/widok_01_19_test_labels.txt test-img-size: 1024 conf-thres: 0.3 iou-thres: 0.6 classes: agnostic-nms: augment: confussion-matrix: labels-dir: /home/tomekb/yolov3/data/widok_01_19/widok_01_19_labels bayes: todo: todo