import glob import random import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn from utils import torch_utils matplotlib.rc('font', **{'size': 12}) # Set printoptions torch.set_printoptions(linewidth=1320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) def float3(x): # format floats to 3 decimals return float(format(x, '.3f')) def init_seeds(seed=0): random.seed(seed) np.random.seed(seed) torch_utils.init_seeds(seed=seed) def load_classes(path): # Loads class labels at 'path' fp = open(path, 'r') names = fp.read().split('\n') return list(filter(None, names)) # filter removes empty strings (such as last line) def model_info(model): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients print('\n%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % ( i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) print('Model Summary: %g layers, %g parameters, %g gradients' % (i + 1, n_p, n_g)) def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) n = np.bincount(classes, minlength=nc) weights = np.zeros(nc) i = n.nonzero() weights[i] = 1 / n[i] # number of targets per class weights /= weights.sum() return torch.Tensor(weights) def coco_class_weights(): # frequency of each class in coco train2014 weights = 1 / torch.FloatTensor( [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671, 6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689, 4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004, 5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933, 1877, 17630, 4337, 4624, 1075, 3468, 135, 1380]) weights /= weights.sum() return weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] return x def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.03) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.03) torch.nn.init.constant_(m.bias.data, 0.0) def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 y[:, 1] = (x[:, 1] + x[:, 3]) / 2 y[:, 2] = x[:, 2] - x[:, 0] y[:, 3] = x[:, 3] - x[:, 1] return y def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 y[:, 1] = x[:, 1] - x[:, 3] / 2 y[:, 2] = x[:, 0] + x[:, 2] / 2 y[:, 3] = x[:, 1] + x[:, 3] / 2 return y def scale_coords(img1_shape, coords, img0_shape): # Rescale coords1 (xyxy) from img1_shape to img0_shape gain = max(img1_shape) / max(img0_shape) # gain = old / new coords[:, [0, 2]] -= (img1_shape[1] - img0_shape[1] * gain) / 2 # x padding coords[:, [1, 3]] -= (img1_shape[0] - img0_shape[0] * gain) / 2 # y padding coords[:, :4] /= gain coords[:, :4] = coords[:, :4].clamp(min=0) return coords def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (list). conf: Objectness value from 0-1 (list). pred_cls: Predicted object classes (list). target_cls: True object classes (list). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = (target_cls == c).sum() # Number of ground truth objects n_p = i.sum() # Number of predicted objects if n_p == 0 and n_gt == 0: continue elif n_p == 0 or n_gt == 0: ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum() tpc = (tp[i]).cumsum() # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(recall_curve[-1]) # Precision precision_curve = tpc / (tpc + fpc) p.append(precision_curve[-1]) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) # Plot # plt.plot(recall_curve, precision_curve) # Compute F1 score (harmonic mean of precision and recall) p, r, ap = np.array(p), np.array(r), np.array(ap) f1 = 2 * p * r / (p + r + 1e-16) return p, r, ap, f1, unique_classes.astype('int32') def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def bbox_iou(box1, box2, x1y1x2y2=True): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # x, y, w, h = box1 b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \ (b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area return inter_area / union_area # iou def wh_iou(box1, box2): # Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2 box2 = box2.t() # w, h = box1 w1, h1 = box1[0], box1[1] w2, h2 = box2[0], box2[1] # Intersection area inter_area = torch.min(w1, w2) * torch.min(h1, h2) # Union Area union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area return inter_area / union_area # iou def compute_loss(p, targets, model): # predictions, targets, model ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor lxy, lwh, lcls, lconf = ft([0]), ft([0]), ft([0]), ft([0]) txy, twh, tcls, indices = build_targets(model, targets) # Define criteria MSE = nn.MSELoss() CE = nn.CrossEntropyLoss(weight=model.class_weights) BCE = nn.BCEWithLogitsLoss() # Compute losses h = model.hyp # hyperparameters bs = p[0].shape[0] # batch size k = h['k'] * bs # loss gain for i, pi0 in enumerate(p): # layer i predictions, i b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tconf = torch.zeros_like(pi0[..., 0]) # conf # Compute losses if len(b): # number of targets pi = pi0[b, a, gj, gi] # predictions closest to anchors tconf[b, a, gj, gi] = 1 # conf # pi[..., 2:4] = torch.sigmoid(pi[..., 2:4]) # wh power loss (uncomment) lxy += (k * h['xy']) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss lwh += (k * h['wh']) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # class_conf loss # pos_weight = ft([gp[i] / min(gp) * 4.]) # BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight) lconf += (k * h['conf']) * BCE(pi0[..., 4], tconf) # obj_conf loss loss = lxy + lwh + lconf + lcls return loss, torch.cat((lxy, lwh, lconf, lcls, loss)).detach() def build_targets(model, targets): # targets = [image, class, x, y, w, h] iou_thres = model.hyp['iou_t'] # hyperparameter if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel): model = model.module nt = len(targets) txy, twh, tcls, indices = [], [], [], [] for i in model.yolo_layers: layer = model.module_list[i][0] # iou of targets-anchors t, a = targets, [] gwh = targets[:, 4:6] * layer.ng if nt: iou = [wh_iou(x, gwh) for x in layer.anchor_vec] iou, a = torch.stack(iou, 0).max(0) # best iou and anchor # reject below threshold ious (OPTIONAL, increases P, lowers R) reject = True if reject: j = iou > iou_thres t, a, gwh = targets[j], a[j], gwh[j] # Indices b, c = t[:, :2].long().t() # target image, class gxy = t[:, 2:4] * layer.ng # grid x, y gi, gj = gxy.long().t() # grid x, y indices indices.append((b, a, gj, gi)) # XY coordinates txy.append(gxy - gxy.floor()) # Width and height twh.append(torch.log(gwh / layer.anchor_vec[a])) # wh yolo method # twh.append((gwh / layer.anchor_vec[a]) ** (1 / 3) / 2) # wh power method # Class tcls.append(c) if c.shape[0]: assert c.max() <= layer.nc, 'Target classes exceed model classes' return txy, twh, tcls, indices def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.5): """ Removes detections with lower object confidence score than 'conf_thres' Non-Maximum Suppression to further filter detections. Returns detections with shape: (x1, y1, x2, y2, object_conf, class_conf, class) """ min_wh = 2 # (pixels) minimum box width and height output = [None] * len(prediction) for image_i, pred in enumerate(prediction): # Experiment: Prior class size rejection # x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3] # a = w * h # area # ar = w / (h + 1e-16) # aspect ratio # n = len(w) # log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar) # shape_likelihood = np.zeros((n, 60), dtype=np.float32) # x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1) # from scipy.stats import multivariate_normal # for c in range(60): # shape_likelihood[:, c] = # multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2]) # Multiply conf by class conf to get combined confidence class_conf, class_pred = pred[:, 5:].max(1) pred[:, 4] *= class_conf # Select only suitable predictions i = (pred[:, 4] > conf_thres) & (pred[:, 2:4] > min_wh).all(1) & torch.isfinite(pred).all(1) pred = pred[i] # If none are remaining => process next image if len(pred) == 0: continue # Select predicted classes class_conf = class_conf[i] class_pred = class_pred[i].unsqueeze(1).float() # Box (center x, center y, width, height) to (x1, y1, x2, y2) pred[:, :4] = xywh2xyxy(pred[:, :4]) # pred[:, 4] *= class_conf # improves mAP from 0.549 to 0.551 # Detections ordered as (x1y1x2y2, obj_conf, class_conf, class_pred) pred = torch.cat((pred[:, :5], class_conf.unsqueeze(1), class_pred), 1) # Get detections sorted by decreasing confidence scores pred = pred[(-pred[:, 4]).argsort()] det_max = [] nms_style = 'MERGE' # 'OR' (default), 'AND', 'MERGE' (experimental) for c in pred[:, -1].unique(): dc = pred[pred[:, -1] == c] # select class c n = len(dc) if n == 1: det_max.append(dc) # No NMS required if only 1 prediction continue elif n > 100: dc = dc[:100] # limit to first 100 boxes: https://github.com/ultralytics/yolov3/issues/117 # Non-maximum suppression if nms_style == 'OR': # default # METHOD1 # ind = list(range(len(dc))) # while len(ind): # j = ind[0] # det_max.append(dc[j:j + 1]) # save highest conf detection # reject = (bbox_iou(dc[j], dc[ind]) > nms_thres).nonzero() # [ind.pop(i) for i in reversed(reject)] # METHOD2 while dc.shape[0]: det_max.append(dc[:1]) # save highest conf detection if len(dc) == 1: # Stop if we're at the last detection break iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes dc = dc[1:][iou < nms_thres] # remove ious > threshold elif nms_style == 'AND': # requires overlap, single boxes erased while len(dc) > 1: iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes if iou.max() > 0.5: det_max.append(dc[:1]) dc = dc[1:][iou < nms_thres] # remove ious > threshold elif nms_style == 'MERGE': # weighted mixture box while len(dc): if len(dc) == 1: det_max.append(dc) break i = bbox_iou(dc[0], dc) > nms_thres # iou with other boxes weights = dc[i, 4:5] dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum() det_max.append(dc[:1]) dc = dc[i == 0] if len(det_max): det_max = torch.cat(det_max) # concatenate output[image_i] = det_max[(-det_max[:, 4]).argsort()] # sort return output def get_yolo_layers(model): bool_vec = [x['type'] == 'yolo' for x in model.module_defs] return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3 def strip_optimizer_from_checkpoint(filename='weights/best.pt'): # Strip optimizer from *.pt files for lighter files (reduced by 2/3 size) a = torch.load(filename, map_location='cpu') a['optimizer'] = [] torch.save(a, filename.replace('.pt', '_lite.pt')) def coco_class_count(path='../coco/labels/train2014/'): # Histogram of occurrences per class nc = 80 # number classes x = np.zeros(nc, dtype='int32') files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) print(i, len(files)) def coco_only_people(path='../coco/labels/val2014/'): # Find images with only people files = sorted(glob.glob('%s/*.*' % path)) for i, file in enumerate(files): labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) if all(labels[:, 0] == 0): print(labels.shape[0], file) # Plotting functions --------------------------------------------------------------------------------------------------- def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def plot_wh_methods(): # from utils.utils import *; plot_wh_methods() # Compares the two methods for width-height anchor multiplication # https://github.com/ultralytics/yolov3/issues/168 x = np.arange(-4.0, 4.0, .1) ya = np.exp(x) yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 fig = plt.figure(figsize=(6, 3), dpi=150) plt.plot(x, ya, '.-', label='yolo method') plt.plot(x, yb ** 2, '.-', label='^2 power method') plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method') plt.xlim(left=-4, right=4) plt.ylim(bottom=0, top=6) plt.xlabel('input') plt.ylabel('output') plt.legend() fig.tight_layout() fig.savefig('comparison.png', dpi=300) def plot_images(imgs, targets, fname='images.jpg'): # Plots training images overlaid with targets imgs = imgs.cpu().numpy() targets = targets.cpu().numpy() fig = plt.figure(figsize=(10, 10)) bs, _, h, w = imgs.shape # batch size, _, height, width ns = np.ceil(bs ** 0.5) # number of subplots for i in range(bs): boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T boxes[[0, 2]] *= w boxes[[1, 3]] *= h plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0)) plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-') plt.axis('off') fig.tight_layout() fig.savefig(fname, dpi=300) plt.close() def plot_results(start=0, stop=0): # from utils.utils import *; plot_results() # Plot training results files 'results*.txt' # import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt') fig, ax = plt.subplots(2, 5, figsize=(14, 7)) ax = ax.ravel() s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Train Loss', 'Precision', 'Recall', 'mAP', 'F1', 'Test Loss'] for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11, 12, 13]).T n = results.shape[1] # number of rows x = range(start, min(stop, n) if stop else n) for i in range(10): ax[i].plot(x, results[i, x], marker='.', label=f.replace('.txt', '')) ax[i].set_title(s[i]) ax[0].legend() fig.tight_layout() fig.savefig('results.png', dpi=300)