import os from collections import defaultdict import torch.nn as nn from utils.parse_config import * from utils.utils import * ONNX_EXPORT = False def create_modules(module_defs): """ Constructs module list of layer blocks from module configuration in module_defs """ hyperparams = module_defs.pop(0) output_filters = [int(hyperparams['channels'])] module_list = nn.ModuleList() yolo_layer_count = 0 for i, module_def in enumerate(module_defs): modules = nn.Sequential() if module_def['type'] == 'convolutional': bn = int(module_def['batch_normalize']) filters = int(module_def['filters']) kernel_size = int(module_def['size']) pad = (kernel_size - 1) // 2 if int(module_def['pad']) else 0 modules.add_module('conv_%d' % i, nn.Conv2d(in_channels=output_filters[-1], out_channels=filters, kernel_size=kernel_size, stride=int(module_def['stride']), padding=pad, bias=not bn)) if bn: modules.add_module('batch_norm_%d' % i, nn.BatchNorm2d(filters)) if module_def['activation'] == 'leaky': modules.add_module('leaky_%d' % i, nn.LeakyReLU(0.1)) elif module_def['type'] == 'maxpool': kernel_size = int(module_def['size']) stride = int(module_def['stride']) if kernel_size == 2 and stride == 1: modules.add_module('_debug_padding_%d' % i, nn.ZeroPad2d((0, 1, 0, 1))) maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2)) modules.add_module('maxpool_%d' % i, maxpool) elif module_def['type'] == 'upsample': # upsample = nn.Upsample(scale_factor=int(module_def['stride']), mode='nearest') # WARNING: deprecated upsample = Upsample(scale_factor=int(module_def['stride'])) modules.add_module('upsample_%d' % i, upsample) elif module_def['type'] == 'route': layers = [int(x) for x in module_def['layers'].split(',')] filters = sum([output_filters[i + 1 if i > 0 else i] for i in layers]) modules.add_module('route_%d' % i, EmptyLayer()) elif module_def['type'] == 'shortcut': filters = output_filters[int(module_def['from'])] modules.add_module('shortcut_%d' % i, EmptyLayer()) elif module_def['type'] == 'yolo': anchor_idxs = [int(x) for x in module_def['mask'].split(',')] # Extract anchors anchors = [float(x) for x in module_def['anchors'].split(',')] anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)] anchors = [anchors[i] for i in anchor_idxs] nC = int(module_def['classes']) # number of classes img_size = int(hyperparams['height']) # Define detection layer yolo_layer = YOLOLayer(anchors, nC, img_size, yolo_layer_count, cfg=hyperparams['cfg']) modules.add_module('yolo_%d' % i, yolo_layer) yolo_layer_count += 1 # Register module list and number of output filters module_list.append(modules) output_filters.append(filters) return hyperparams, module_list class EmptyLayer(nn.Module): """Placeholder for 'route' and 'shortcut' layers""" def __init__(self): super(EmptyLayer, self).__init__() def forward(self, x): return x class Upsample(nn.Module): # Custom Upsample layer (nn.Upsample gives deprecated warning message) def __init__(self, scale_factor=1, mode='nearest'): super(Upsample, self).__init__() self.scale_factor = scale_factor self.mode = mode def forward(self, x): return F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode) class YOLOLayer(nn.Module): def __init__(self, anchors, nC, img_size, yolo_layer, cfg): super(YOLOLayer, self).__init__() nA = len(anchors) self.anchors = torch.FloatTensor(anchors) self.nA = nA # number of anchors (3) self.nC = nC # number of classes (80) self.img_size = 0 # self.coco_class_weights = coco_class_weights() if ONNX_EXPORT: # grids must be computed in __init__ stride = [32, 16, 8][yolo_layer] # stride of this layer if cfg.endswith('yolov3-tiny.cfg'): stride *= 2 self.nG = int(img_size / stride) # number grid points create_grids(self, img_size, self.nG) def forward(self, p, img_size, targets=None, var=None): if ONNX_EXPORT: bs, nG = 1, self.nG # batch size, grid size else: bs, nG = p.shape[0], p.shape[-1] if self.img_size != img_size: create_grids(self, img_size, nG) if p.is_cuda: self.grid_xy = self.grid_xy.cuda() self.anchor_wh = self.anchor_wh.cuda() # p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 80) # (bs, anchors, grid, grid, classes + xywh) p = p.view(bs, self.nA, self.nC + 5, nG, nG).permute(0, 1, 3, 4, 2).contiguous() # prediction # xy, width and height xy = torch.sigmoid(p[..., 0:2]) wh = p[..., 2:4] # wh (yolo method) # wh = torch.sigmoid(p[..., 2:4]) # wh (power method) # Training if targets is not None: MSELoss = nn.MSELoss() BCEWithLogitsLoss = nn.BCEWithLogitsLoss() CrossEntropyLoss = nn.CrossEntropyLoss() # Get outputs p_conf = p[..., 4] # Conf p_cls = p[..., 5:] # Class txy, twh, mask, tcls = build_targets(targets, self.anchor_vec, self.nA, self.nC, nG) tcls = tcls[mask] if xy.is_cuda: txy, twh, mask, tcls = txy.cuda(), twh.cuda(), mask.cuda(), tcls.cuda() # Compute losses nT = sum([len(x) for x in targets]) # number of targets nM = mask.sum().float() # number of anchors (assigned to targets) k = 1 # nM / bs if nM > 0: lxy = k * MSELoss(xy[mask], txy[mask]) lwh = k * MSELoss(wh[mask], twh[mask]) lcls = (k / 4) * CrossEntropyLoss(p_cls[mask], torch.argmax(tcls, 1)) # lcls = (k * 10) * BCEWithLogitsLoss(p_cls[mask], tcls.float()) else: FT = torch.cuda.FloatTensor if p.is_cuda else torch.FloatTensor lxy, lwh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]) lconf = (k * 64) * BCEWithLogitsLoss(p_conf, mask.float()) # Sum loss components loss = lxy + lwh + lconf + lcls return loss, loss.item(), lxy.item(), lwh.item(), lconf.item(), lcls.item(), nT else: if ONNX_EXPORT: grid_xy = self.grid_xy.repeat((1, self.nA, 1, 1, 1)).view((1, -1, 2)) anchor_wh = self.anchor_wh.repeat((1, 1, nG, nG, 1)).view((1, -1, 2)) / nG # p = p.view(-1, 85) # xy = xy + self.grid_xy[0] # x, y # wh = torch.exp(wh) * self.anchor_wh[0] # width, height # p_conf = torch.sigmoid(p[:, 4:5]) # Conf # p_cls = F.softmax(p[:, 5:85], 1) * p_conf # SSD-like conf # return torch.cat((xy / nG, wh, p_conf, p_cls), 1).t() p = p.view(1, -1, 85) xy = xy + grid_xy # x, y wh = torch.exp(p[..., 2:4]) * anchor_wh # width, height p_conf = torch.sigmoid(p[..., 4:5]) # Conf p_cls = p[..., 5:85] # Broadcasting only supported on first dimension in CoreML. See onnx-coreml/_operators.py # p_cls = F.softmax(p_cls, 2) * p_conf # SSD-like conf p_cls = torch.exp(p_cls).permute((2, 1, 0)) p_cls = p_cls / p_cls.sum(0).unsqueeze(0) * p_conf.permute((2, 1, 0)) # F.softmax() equivalent p_cls = p_cls.permute(2, 1, 0) return torch.cat((xy / nG, wh, p_conf, p_cls), 2).squeeze().t() p[..., 0:2] = xy + self.grid_xy # xy p[..., 2:4] = torch.exp(wh) * self.anchor_wh # wh yolo method # p[..., 2:4] = ((wh * 2) ** 2) * self.anchor_wh # wh power method p[..., 4] = torch.sigmoid(p[..., 4]) # p_conf p[..., :4] *= self.stride # reshape from [1, 3, 13, 13, 85] to [1, 507, 85] return p.view(bs, -1, 5 + self.nC) class Darknet(nn.Module): """YOLOv3 object detection model""" def __init__(self, cfg_path, img_size=416): super(Darknet, self).__init__() self.module_defs = parse_model_cfg(cfg_path) self.module_defs[0]['cfg'] = cfg_path self.module_defs[0]['height'] = img_size self.hyperparams, self.module_list = create_modules(self.module_defs) self.img_size = img_size self.loss_names = ['loss', 'xy', 'wh', 'conf', 'cls', 'nT'] self.losses = [] def forward(self, x, targets=None, var=0): self.losses = defaultdict(float) is_training = targets is not None img_size = x.shape[-1] layer_outputs = [] output = [] for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)): mtype = module_def['type'] if mtype in ['convolutional', 'upsample', 'maxpool']: x = module(x) elif mtype == 'route': layer_i = [int(x) for x in module_def['layers'].split(',')] if len(layer_i) == 1: x = layer_outputs[layer_i[0]] else: x = torch.cat([layer_outputs[i] for i in layer_i], 1) elif mtype == 'shortcut': layer_i = int(module_def['from']) x = layer_outputs[-1] + layer_outputs[layer_i] elif mtype == 'yolo': if is_training: # get loss x, *losses = module[0](x, img_size, targets, var) for name, loss in zip(self.loss_names, losses): self.losses[name] += loss else: # get detections x = module[0](x, img_size) output.append(x) layer_outputs.append(x) if is_training: self.losses['nT'] /= 3 if ONNX_EXPORT: output = torch.cat(output, 1) # merge the 3 layers 85 x (507, 2028, 8112) to 85 x 10647 return output[5:85].t(), output[:4].t() # ONNX scores, boxes return sum(output) if is_training else torch.cat(output, 1) def create_grids(self, img_size, nG): self.stride = img_size / nG # build xy offsets grid_x = torch.arange(nG).repeat((nG, 1)).view((1, 1, nG, nG)).float() grid_y = grid_x.permute(0, 1, 3, 2) self.grid_xy = torch.stack((grid_x, grid_y), 4) # build wh gains self.anchor_vec = self.anchors / self.stride self.anchor_wh = self.anchor_vec.view(1, self.nA, 1, 1, 2) def load_darknet_weights(self, weights, cutoff=-1): # Parses and loads the weights stored in 'weights' # cutoff: save layers between 0 and cutoff (if cutoff = -1 all are saved) weights_file = weights.split(os.sep)[-1] # Try to download weights if not available locally if not os.path.isfile(weights): try: os.system('wget https://pjreddie.com/media/files/' + weights_file + ' -O ' + weights) except IOError: print(weights + ' not found') # Establish cutoffs if weights_file == 'darknet53.conv.74': cutoff = 75 elif weights_file == 'yolov3-tiny.conv.15': cutoff = 15 # Open the weights file fp = open(weights, 'rb') header = np.fromfile(fp, dtype=np.int32, count=5) # First five are header values # Needed to write header when saving weights self.header_info = header self.seen = header[3] # number of images seen during training weights = np.fromfile(fp, dtype=np.float32) # The rest are weights fp.close() ptr = 0 for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])): if module_def['type'] == 'convolutional': conv_layer = module[0] if module_def['batch_normalize']: # Load BN bias, weights, running mean and running variance bn_layer = module[1] num_b = bn_layer.bias.numel() # Number of biases # Bias bn_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.bias) bn_layer.bias.data.copy_(bn_b) ptr += num_b # Weight bn_w = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.weight) bn_layer.weight.data.copy_(bn_w) ptr += num_b # Running Mean bn_rm = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_mean) bn_layer.running_mean.data.copy_(bn_rm) ptr += num_b # Running Var bn_rv = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_var) bn_layer.running_var.data.copy_(bn_rv) ptr += num_b else: # Load conv. bias num_b = conv_layer.bias.numel() conv_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(conv_layer.bias) conv_layer.bias.data.copy_(conv_b) ptr += num_b # Load conv. weights num_w = conv_layer.weight.numel() conv_w = torch.from_numpy(weights[ptr:ptr + num_w]).view_as(conv_layer.weight) conv_layer.weight.data.copy_(conv_w) ptr += num_w """ @:param path - path of the new weights file @:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved) """ def save_weights(self, path, cutoff=-1): fp = open(path, 'wb') self.header_info[3] = self.seen # number of images seen during training self.header_info.tofile(fp) # Iterate through layers for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])): if module_def['type'] == 'convolutional': conv_layer = module[0] # If batch norm, load bn first if module_def['batch_normalize']: bn_layer = module[1] bn_layer.bias.data.cpu().numpy().tofile(fp) bn_layer.weight.data.cpu().numpy().tofile(fp) bn_layer.running_mean.data.cpu().numpy().tofile(fp) bn_layer.running_var.data.cpu().numpy().tofile(fp) # Load conv bias else: conv_layer.bias.data.cpu().numpy().tofile(fp) # Load conv weights conv_layer.weight.data.cpu().numpy().tofile(fp) fp.close()