Glenn Jocher
9c776b8052
updates
2019-07-14 21:38:55 +02:00
Glenn Jocher
3fc676b28a
updates
2019-07-14 11:29:07 +02:00
Glenn Jocher
831b6e39b6
updates
2019-07-12 17:02:04 +02:00
Glenn Jocher
03c6fe1ffe
updates
2019-07-12 16:10:37 +02:00
Glenn Jocher
0aa9759a90
updates
2019-07-12 15:44:39 +02:00
Glenn Jocher
bb38391342
updates
2019-07-12 14:28:46 +02:00
Glenn Jocher
bd9789aa00
equal layer weights
2019-07-12 12:23:17 +02:00
Glenn Jocher
5886200401
updates
2019-07-12 01:19:32 +02:00
Glenn Jocher
a2909c59f8
updates
2019-07-11 11:57:10 +02:00
Glenn Jocher
b005a17eff
updates
2019-07-11 11:56:46 +02:00
Glenn Jocher
3373006d0e
updates
2019-07-10 22:11:48 +02:00
Glenn Jocher
4f6ef59d92
updates
2019-07-10 20:47:05 +02:00
Glenn Jocher
a9e42a16f1
updates
2019-07-10 19:48:29 +02:00
Glenn Jocher
bb1e551150
updates
2019-07-08 19:26:46 +02:00
Glenn Jocher
0bd763f528
updates
2019-07-08 18:32:31 +02:00
Glenn Jocher
feeaf734f2
updates
2019-07-08 18:04:44 +02:00
Glenn Jocher
da9ec7d12f
updates
2019-07-08 18:00:19 +02:00
Glenn Jocher
60bc2c1fbd
updates
2019-07-08 15:43:46 +02:00
Glenn Jocher
94669fb704
updates
2019-07-08 15:24:20 +02:00
Glenn Jocher
291c3ec9c7
updates
2019-07-08 15:02:20 +02:00
glenn-jocher
70f6379601
GIoU to default
2019-07-07 23:24:34 +02:00
glenn-jocher
32a52dfb02
GIoU to default
2019-07-05 12:33:37 +02:00
glenn-jocher
429bd3b8a9
GIoU to default
2019-07-05 11:41:43 +02:00
glenn-jocher
b649a95c9a
GIoU to default
2019-07-05 00:36:37 +02:00
glenn-jocher
abf59f1565
updates
2019-07-04 22:10:46 +02:00
glenn-jocher
d0eace6cec
updates
2019-07-04 21:34:33 +02:00
glenn-jocher
109991198c
updates
2019-07-03 16:18:08 +02:00
glenn-jocher
1e62ee2152
updates
2019-07-03 16:17:46 +02:00
glenn-jocher
ab141fcc1f
updates
2019-07-03 15:37:04 +02:00
glenn-jocher
a8cf64af31
updates
2019-07-02 18:21:28 +02:00
Yonghye Kwon
ccf757b3ea
changed the criteria for the best weight file ( #356 )
...
* changed the criteria for the best weight file
changed the criteria for the best weight file from loss to mAP
I trained the model on my custom dataset. But I failed to get a good results when I load the weight file that has the lowest loss on test dataset.
I thought that the loss used in YOLO is not proper criteria for detection performance. So I changed the criteria from loss to mAP.
what do you think of this?
* Update train.py
2019-07-02 12:24:18 +02:00
glenn-jocher
1fd871abd8
updates
2019-07-01 17:44:42 +02:00
glenn-jocher
f43ee6ef94
updates
2019-07-01 17:17:29 +02:00
glenn-jocher
cf51cf9c99
updates
2019-07-01 17:14:42 +02:00
glenn-jocher
05358accbb
updates
2019-07-01 15:23:30 +02:00
glenn-jocher
c4409aa2ed
updates
2019-07-01 15:22:22 +02:00
glenn-jocher
b0d62e5204
updates
2019-07-01 15:21:06 +02:00
glenn-jocher
5e2b802f68
updates
2019-07-01 14:48:44 +02:00
glenn-jocher
63036deeb7
updates
2019-07-01 00:41:13 +02:00
glenn-jocher
32f5ea955b
updates
2019-06-30 17:47:10 +02:00
glenn-jocher
db2674aa31
updates
2019-06-30 17:34:29 +02:00
glenn-jocher
388b66dcd0
updates
2019-06-30 15:24:34 +02:00
Glenn Jocher
45540c787f
updates
2019-06-25 19:36:11 +02:00
Glenn Jocher
1d76751e1f
updates
2019-06-25 12:37:24 +02:00
Glenn Jocher
e4cc830690
updates
2019-06-25 12:21:27 +02:00
Glenn Jocher
9a56d97059
updates
2019-06-25 11:54:19 +02:00
Glenn Jocher
6b222df35d
updates
2019-06-24 15:56:20 +02:00
Glenn Jocher
d208f006a1
updates
2019-06-24 14:46:00 +02:00
Glenn Jocher
0005823d1f
updates
2019-06-24 13:43:17 +02:00
Glenn Jocher
57b616b8b1
updates
2019-06-23 22:01:11 +02:00