P and R evaluated at 0.5 score
This commit is contained in:
parent
65eeb1bae5
commit
feea9c1a65
|
@ -188,6 +188,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
|
|||
unique_classes = np.unique(target_cls)
|
||||
|
||||
# Create Precision-Recall curve and compute AP for each class
|
||||
pr_score = 0.5 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
||||
s = [len(unique_classes), tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
||||
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
||||
for ci, c in enumerate(unique_classes):
|
||||
|
@ -204,18 +205,18 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
|
|||
|
||||
# Recall
|
||||
recall = tpc / (n_gt + 1e-16) # recall curve
|
||||
r[ci] = recall[-1]
|
||||
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
||||
|
||||
# Precision
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p[ci] = precision[-1]
|
||||
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
||||
|
||||
# AP from recall-precision curve
|
||||
for j in range(tp.shape[1]):
|
||||
ap[ci, j] = compute_ap(recall[:, j], precision[:, j])
|
||||
|
||||
# Plot
|
||||
# fig, ax = plt.subplots(1, 1, figsize=(4, 4))
|
||||
# fig, ax = plt.subplots(1, 1, figsize=(5, 5))
|
||||
# ax.plot(recall, precision)
|
||||
# ax.set_xlabel('Recall')
|
||||
# ax.set_ylabel('Precision')
|
||||
|
|
Loading…
Reference in New Issue