diff --git a/utils/utils.py b/utils/utils.py index 3a0074b0..cf2a17be 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -430,6 +430,17 @@ def coco_class_count(path='../coco/labels/train2014/'): print(i, len(files)) +def coco_only_people(path='../coco/labels/val2014/'): + # find images with only people + import glob + + files = sorted(glob.glob('%s/*.*' % path)) + for i, file in enumerate(files): + labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) + if all(labels[:, 0] == 0): + print(labels.shape[0], file) + + def plot_results(): # Plot YOLO training results file 'results.txt' import glob @@ -437,11 +448,11 @@ def plot_results(): import numpy as np # import os; os.system('rm -rf results.txt && wget https://storage.googleapis.com/ultralytics/results_v1_0.txt') - plt.figure(figsize=(16, 8)) - s = ['XY', 'Width-Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision'] + plt.figure(figsize=(14, 7)) + s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision'] files = sorted(glob.glob('results*.txt')) for f in files: - results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 11, 12, 13]).T # column 11 is mAP + results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP n = results.shape[1] for i in range(8): plt.subplot(2, 4, i + 1)