Merge NMS update

This commit is contained in:
Glenn Jocher 2020-03-26 12:20:01 -07:00
parent 94344f5bea
commit eac07f9da3
1 changed files with 18 additions and 86 deletions

View File

@ -505,8 +505,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=T
# Box constraints
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
method = 'vision_batch'
batched = 'batch' in method # run once per image, all classes simultaneously
method = 'vision'
nc = prediction[0].shape[1] - 5 # number of classes
multi_label &= nc > 1 # multiple labels per box
output = [None] * len(prediction)
@ -548,93 +547,26 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=T
continue
# Sort by confidence
if not method.startswith('vision'):
pred = pred[pred[:, 4].argsort(descending=True)]
# if method == 'fast_batch':
# pred = pred[pred[:, 4].argsort(descending=True)]
# Batched NMS
if batched:
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # class-agnostic NMS
boxes, scores = pred[:, :4].clone(), pred[:, 4]
boxes += c.view(-1, 1) * max_wh
if method == 'vision_batch':
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
elif method == 'merge_batch': # Merge NMS
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
iou = box_iou(boxes, boxes[i]).tril_() # upper triangular iou matrix
weights = (iou > iou_thres) * scores.view(-1, 1)
weights /= weights.sum(0)
pred[i, :4] = torch.matmul(weights.T, pred[:, :4]) # merged_boxes(n,4) = weights(n,n) * boxes(n,4)
elif method == 'fast_batch': # FastNMS from https://github.com/dbolya/yolact
iou = box_iou(boxes, boxes).triu_(diagonal=1) # upper triangular iou matrix
i = iou.max(0)[0] < iou_thres
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # classes
boxes, scores = pred[:, :4].clone(), pred[:, 4]
boxes += c.view(-1, 1) * max_wh # offset boxes by class
if method == 'vision':
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
elif method == 'merge': # Merge NMS (boxes merged using weighted mean)
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
iou = box_iou(boxes, boxes[i]).tril_() # lower triangular iou matrix
weights = (iou > iou_thres) * scores.view(-1, 1)
weights /= weights.sum(0)
pred[i, :4] = torch.matmul(weights.T, pred[:, :4]) # merged_boxes(n,4) = weights(n,n) * boxes(n,4)
elif method == 'fast': # FastNMS from https://github.com/dbolya/yolact
iou = box_iou(boxes, boxes).triu_(diagonal=1) # upper triangular iou matrix
i = iou.max(0)[0] < iou_thres
output[image_i] = pred[i]
continue
# All other NMS methods
det_max = []
cls = pred[:, -1]
for c in cls.unique():
dc = pred[cls == c] # select class c
n = len(dc)
if n == 1:
det_max.append(dc) # No NMS required if only 1 prediction
continue
elif n > 500:
dc = dc[:500] # limit to first 500 boxes: https://github.com/ultralytics/yolov3/issues/117
if method == 'or': # default
# METHOD1
# ind = list(range(len(dc)))
# while len(ind):
# j = ind[0]
# det_max.append(dc[j:j + 1]) # save highest conf detection
# reject = (bbox_iou(dc[j], dc[ind]) > iou_thres).nonzero()
# [ind.pop(i) for i in reversed(reject)]
# METHOD2
while dc.shape[0]:
det_max.append(dc[:1]) # save highest conf detection
if len(dc) == 1: # Stop if we're at the last detection
break
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
dc = dc[1:][iou < iou_thres] # remove ious > threshold
elif method == 'and': # requires overlap, single boxes erased
while len(dc) > 1:
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
if iou.max() > 0.5:
det_max.append(dc[:1])
dc = dc[1:][iou < iou_thres] # remove ious > threshold
elif method == 'merge': # weighted mixture box
while len(dc):
if len(dc) == 1:
det_max.append(dc)
break
i = bbox_iou(dc[0], dc) > iou_thres # iou with other boxes
weights = dc[i, 4:5]
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
det_max.append(dc[:1])
dc = dc[i == 0]
elif method == 'soft': # soft-NMS https://arxiv.org/abs/1704.04503
sigma = 0.5 # soft-nms sigma parameter
while len(dc):
if len(dc) == 1:
det_max.append(dc)
break
det_max.append(dc[:1])
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
dc = dc[1:]
dc[:, 4] *= torch.exp(-iou ** 2 / sigma) # decay confidences
dc = dc[dc[:, 4] > conf_thres] # https://github.com/ultralytics/yolov3/issues/362
if len(det_max):
det_max = torch.cat(det_max) # concatenate
output[image_i] = det_max[det_max[:, 4].argsort(descending=True)] # sort
return output
output[image_i] = pred[i]
def get_yolo_layers(model):