Merge NMS update
This commit is contained in:
parent
94344f5bea
commit
eac07f9da3
|
@ -505,8 +505,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=T
|
|||
# Box constraints
|
||||
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||||
|
||||
method = 'vision_batch'
|
||||
batched = 'batch' in method # run once per image, all classes simultaneously
|
||||
method = 'vision'
|
||||
nc = prediction[0].shape[1] - 5 # number of classes
|
||||
multi_label &= nc > 1 # multiple labels per box
|
||||
output = [None] * len(prediction)
|
||||
|
@ -548,93 +547,26 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, multi_label=T
|
|||
continue
|
||||
|
||||
# Sort by confidence
|
||||
if not method.startswith('vision'):
|
||||
pred = pred[pred[:, 4].argsort(descending=True)]
|
||||
# if method == 'fast_batch':
|
||||
# pred = pred[pred[:, 4].argsort(descending=True)]
|
||||
|
||||
# Batched NMS
|
||||
if batched:
|
||||
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # class-agnostic NMS
|
||||
c = pred[:, 5] * 0 if agnostic else pred[:, 5] # classes
|
||||
boxes, scores = pred[:, :4].clone(), pred[:, 4]
|
||||
boxes += c.view(-1, 1) * max_wh
|
||||
if method == 'vision_batch':
|
||||
boxes += c.view(-1, 1) * max_wh # offset boxes by class
|
||||
if method == 'vision':
|
||||
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
|
||||
elif method == 'merge_batch': # Merge NMS
|
||||
elif method == 'merge': # Merge NMS (boxes merged using weighted mean)
|
||||
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
|
||||
iou = box_iou(boxes, boxes[i]).tril_() # upper triangular iou matrix
|
||||
iou = box_iou(boxes, boxes[i]).tril_() # lower triangular iou matrix
|
||||
weights = (iou > iou_thres) * scores.view(-1, 1)
|
||||
weights /= weights.sum(0)
|
||||
pred[i, :4] = torch.matmul(weights.T, pred[:, :4]) # merged_boxes(n,4) = weights(n,n) * boxes(n,4)
|
||||
elif method == 'fast_batch': # FastNMS from https://github.com/dbolya/yolact
|
||||
elif method == 'fast': # FastNMS from https://github.com/dbolya/yolact
|
||||
iou = box_iou(boxes, boxes).triu_(diagonal=1) # upper triangular iou matrix
|
||||
i = iou.max(0)[0] < iou_thres
|
||||
|
||||
output[image_i] = pred[i]
|
||||
continue
|
||||
|
||||
# All other NMS methods
|
||||
det_max = []
|
||||
cls = pred[:, -1]
|
||||
for c in cls.unique():
|
||||
dc = pred[cls == c] # select class c
|
||||
n = len(dc)
|
||||
if n == 1:
|
||||
det_max.append(dc) # No NMS required if only 1 prediction
|
||||
continue
|
||||
elif n > 500:
|
||||
dc = dc[:500] # limit to first 500 boxes: https://github.com/ultralytics/yolov3/issues/117
|
||||
|
||||
if method == 'or': # default
|
||||
# METHOD1
|
||||
# ind = list(range(len(dc)))
|
||||
# while len(ind):
|
||||
# j = ind[0]
|
||||
# det_max.append(dc[j:j + 1]) # save highest conf detection
|
||||
# reject = (bbox_iou(dc[j], dc[ind]) > iou_thres).nonzero()
|
||||
# [ind.pop(i) for i in reversed(reject)]
|
||||
|
||||
# METHOD2
|
||||
while dc.shape[0]:
|
||||
det_max.append(dc[:1]) # save highest conf detection
|
||||
if len(dc) == 1: # Stop if we're at the last detection
|
||||
break
|
||||
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
|
||||
dc = dc[1:][iou < iou_thres] # remove ious > threshold
|
||||
|
||||
elif method == 'and': # requires overlap, single boxes erased
|
||||
while len(dc) > 1:
|
||||
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
|
||||
if iou.max() > 0.5:
|
||||
det_max.append(dc[:1])
|
||||
dc = dc[1:][iou < iou_thres] # remove ious > threshold
|
||||
|
||||
elif method == 'merge': # weighted mixture box
|
||||
while len(dc):
|
||||
if len(dc) == 1:
|
||||
det_max.append(dc)
|
||||
break
|
||||
i = bbox_iou(dc[0], dc) > iou_thres # iou with other boxes
|
||||
weights = dc[i, 4:5]
|
||||
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
|
||||
det_max.append(dc[:1])
|
||||
dc = dc[i == 0]
|
||||
|
||||
elif method == 'soft': # soft-NMS https://arxiv.org/abs/1704.04503
|
||||
sigma = 0.5 # soft-nms sigma parameter
|
||||
while len(dc):
|
||||
if len(dc) == 1:
|
||||
det_max.append(dc)
|
||||
break
|
||||
det_max.append(dc[:1])
|
||||
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
|
||||
dc = dc[1:]
|
||||
dc[:, 4] *= torch.exp(-iou ** 2 / sigma) # decay confidences
|
||||
dc = dc[dc[:, 4] > conf_thres] # https://github.com/ultralytics/yolov3/issues/362
|
||||
|
||||
if len(det_max):
|
||||
det_max = torch.cat(det_max) # concatenate
|
||||
output[image_i] = det_max[det_max[:, 4].argsort(descending=True)] # sort
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def get_yolo_layers(model):
|
||||
|
|
Loading…
Reference in New Issue