local path robustness

This commit is contained in:
Glenn Jocher 2020-05-28 14:01:38 -07:00
parent d136ddeeba
commit e99ff3aad0
1 changed files with 16 additions and 11 deletions

View File

@ -260,11 +260,15 @@ class LoadImagesAndLabels(Dataset): # for training/testing
cache_images=False, single_cls=False): cache_images=False, single_cls=False):
try: try:
path = str(Path(path)) # os-agnostic path = str(Path(path)) # os-agnostic
parent = str(Path(path).parent) + os.sep
if os.path.isfile(path): # file if os.path.isfile(path): # file
with open(path, 'r') as f: with open(path, 'r') as f:
f = f.read().splitlines() f = f.read().splitlines()
f = [x.replace('./', parent) for x in f if x.startswith('./')] # local to global path
elif os.path.isdir(path): # folder elif os.path.isdir(path): # folder
f = glob.iglob(path + os.sep + '*.*') f = glob.iglob(path + os.sep + '*.*')
else:
raise Exception('%s does not exist' % path)
self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats] self.img_files = [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats]
except: except:
raise Exception('Error loading data from %s. See %s' % (path, help_url)) raise Exception('Error loading data from %s. See %s' % (path, help_url))
@ -274,7 +278,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches nb = bi[-1] + 1 # number of batches
self.n = n self.n = n # number of images
self.batch = bi # batch index of image self.batch = bi # batch index of image
self.img_size = img_size self.img_size = img_size
self.augment = augment self.augment = augment
@ -290,7 +294,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232 # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect: if self.rect:
# Read image shapes (wh) # Read image shapes (wh)
sp = path.replace('.txt', '.shapes') # shapefile path sp = path.replace('.txt', '') + '.shapes' # shapefile path
try: try:
with open(sp, 'r') as f: # read existing shapefile with open(sp, 'r') as f: # read existing shapefile
s = [x.split() for x in f.read().splitlines()] s = [x.split() for x in f.read().splitlines()]
@ -302,11 +306,11 @@ class LoadImagesAndLabels(Dataset): # for training/testing
# Sort by aspect ratio # Sort by aspect ratio
s = np.array(s, dtype=np.float64) s = np.array(s, dtype=np.float64)
ar = s[:, 1] / s[:, 0] # aspect ratio ar = s[:, 1] / s[:, 0] # aspect ratio
i = ar.argsort() irect = ar.argsort()
self.img_files = [self.img_files[i] for i in i] self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in i] self.label_files = [self.label_files[i] for i in irect]
self.shapes = s[i] # wh self.shapes = s[irect] # wh
ar = ar[i] ar = ar[irect]
# Set training image shapes # Set training image shapes
shapes = [[1, 1]] * nb shapes = [[1, 1]] * nb
@ -327,8 +331,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
if os.path.isfile(np_labels_path): if os.path.isfile(np_labels_path):
s = np_labels_path s = np_labels_path # print string
x = list(np.load(np_labels_path, allow_pickle=True)) x = np.load(np_labels_path, allow_pickle=True)
if len(x) == n: if len(x) == n:
self.labels = x self.labels = x
labels_loaded = True labels_loaded = True
@ -339,6 +343,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
for i, file in enumerate(pbar): for i, file in enumerate(pbar):
if labels_loaded: if labels_loaded:
l = self.labels[i] l = self.labels[i]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else: else:
try: try:
with open(file, 'r') as f: with open(file, 'r') as f:
@ -394,8 +399,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing
pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % ( pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
s, nf, nm, ne, nd, n) s, nf, nm, ne, nd, n)
assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url) assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
if not labels_loaded: if not labels_loaded and n > 1000:
print('Saving labels to %s for faster future loading' % np_labels_path) print('Saving labels to %s for faster future loading' % np_labels_path)
np.save(np_labels_path, self.labels) # save for next time np.save(np_labels_path, self.labels) # save for next time