updates
This commit is contained in:
parent
5ff6e6b3a5
commit
e8a15ac1d7
13
models.py
13
models.py
|
@ -32,9 +32,10 @@ def create_modules(module_defs):
|
|||
bias=not bn))
|
||||
if bn:
|
||||
modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.1))
|
||||
if mdef['activation'] == 'leaky':
|
||||
# modules.add_module('activation', nn.PReLU(num_parameters=filters, init=0.1))
|
||||
if mdef['activation'] == 'leaky': # TODO: activation study https://github.com/ultralytics/yolov3/issues/441
|
||||
modules.add_module('activation', nn.LeakyReLU(0.1, inplace=True))
|
||||
# modules.add_module('activation', nn.PReLU(num_parameters=1))
|
||||
# modules.add_module('activation', Swish())
|
||||
|
||||
elif mdef['type'] == 'maxpool':
|
||||
kernel_size = int(mdef['size'])
|
||||
|
@ -82,6 +83,14 @@ def create_modules(module_defs):
|
|||
return hyperparams, module_list
|
||||
|
||||
|
||||
class Swish(nn.Module):
|
||||
def __init__(self):
|
||||
super(Swish, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class YOLOLayer(nn.Module):
|
||||
def __init__(self, anchors, nc, img_size, yolo_index):
|
||||
super(YOLOLayer, self).__init__()
|
||||
|
|
|
@ -766,8 +766,14 @@ def plot_results(start=0, stop=0): # from utils.utils import *; plot_results()
|
|||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
for i in range(10):
|
||||
ax[i].plot(x, results[i, x], marker='.', label=f.replace('.txt', ''))
|
||||
y = results[i, x]
|
||||
if i in [0, 1, 2, 5, 6, 7]:
|
||||
y[y == 0] = np.nan # dont show zero loss values
|
||||
ax[i].plot(x, y, marker='.', label=f.replace('.txt', ''))
|
||||
ax[i].set_title(s[i])
|
||||
if i in [5, 6, 7]: # share train and val loss y axes
|
||||
ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||
|
||||
fig.tight_layout()
|
||||
ax[4].legend()
|
||||
fig.savefig('results.png', dpi=200)
|
||||
|
@ -785,7 +791,10 @@ def plot_results_overlay(start=1, stop=0): # from utils.utils import *; plot_re
|
|||
ax = ax.ravel()
|
||||
for i in range(5):
|
||||
for j in [i, i + 5]:
|
||||
ax[i].plot(x, results[j, x], marker='.', label=s[j])
|
||||
y = results[j, x]
|
||||
if i in [0, 1, 2]:
|
||||
y[y == 0] = np.nan # dont show zero loss values
|
||||
ax[i].plot(x, y, marker='.', label=s[j])
|
||||
ax[i].set_title(t[i])
|
||||
ax[i].legend()
|
||||
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||
|
@ -793,24 +802,6 @@ def plot_results_overlay(start=1, stop=0): # from utils.utils import *; plot_re
|
|||
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||
|
||||
|
||||
def plot_results_orig(start=0, stop=0): # from utils.utils import *; plot_results_orig()
|
||||
# Plot training results files 'results*.txt' in original format
|
||||
fig, ax = plt.subplots(2, 5, figsize=(14, 7))
|
||||
ax = ax.ravel()
|
||||
s = ['GIoU/XY', 'Width/Height', 'Confidence', 'Classification', 'Train Loss', 'Precision', 'Recall', 'mAP', 'F1',
|
||||
'Test Loss']
|
||||
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Google Drive/results*.txt')):
|
||||
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11, 12, 13]).T
|
||||
n = results.shape[1] # number of rows
|
||||
x = range(start, min(stop, n) if stop else n)
|
||||
for i in range(10):
|
||||
ax[i].plot(x, results[i, x], marker='.', label=f.replace('.txt', ''))
|
||||
ax[i].set_title(s[i])
|
||||
fig.tight_layout()
|
||||
ax[4].legend()
|
||||
fig.savefig('results.png', dpi=200)
|
||||
|
||||
|
||||
def version_to_tuple(version):
|
||||
# Used to compare versions of library
|
||||
return tuple(map(int, (version.split("."))))
|
||||
|
|
Loading…
Reference in New Issue