diff --git a/utils/datasets.py b/utils/datasets.py index 0a44d327..8611835e 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -43,9 +43,9 @@ class LoadImages: # for inference img, _, _, _ = letterbox(img0, height=self.height) # Normalize RGB - img = img[:, :, ::-1].transpose(2, 0, 1) - img = np.ascontiguousarray(img, dtype=np.float32) - img /= 255.0 + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB + img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 + img /= 255.0 # 0 - 255 to 0.0 - 1.0 # cv2.imwrite(img_path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image return img_path, img, img0 @@ -79,9 +79,9 @@ class LoadWebcam: # for inference img, _, _, _ = letterbox(img0, height=self.height) # Normalize RGB - img = img[:, :, ::-1].transpose(2, 0, 1) - img = np.ascontiguousarray(img, dtype=np.float32) - img /= 255.0 + img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB + img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 + img /= 255.0 # 0 - 255 to 0.0 - 1.0 return img_path, img, img0 @@ -207,8 +207,8 @@ class LoadImagesAndLabels: # for training img_shapes.append((h, w)) # Normalize - img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and cv2 to pytorch - img_all = np.ascontiguousarray(img_all, dtype=np.float32) # int8 to float32 + img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # list to np.array and BGR to RGB + img_all = np.ascontiguousarray(img_all, dtype=np.float32) # uint8 to float32 img_all /= 255.0 # 0 - 255 to 0.0 - 1.0 labels_all = torch.from_numpy(np.concatenate(labels_all, 0))