diff --git a/README.md b/README.md index 7977c7a5..a9d6d920 100755 --- a/README.md +++ b/README.md @@ -147,31 +147,31 @@ $ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt |Size |COCO mAP
@0.5...0.95 |COCO mAP
@0.5 --- | --- | --- | --- -YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0
28.7
30.5
**36.4** |29.1
51.8
52.3
**55.7** -YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0
31.2
33.9
**40.0** |33.0
55.4
56.9
**60.0** -YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6
32.7
35.6
**41.5** |34.9
57.7
59.5
**61.4** -YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6
33.1
37.0
**41.9** |35.4
58.2
60.7
**61.6** +YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0
28.7
30.5
**36.6** |29.1
51.8
52.3
**56.0** +YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0
31.2
33.9
**40.4** |33.0
55.4
56.9
**60.2** +YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6
32.7
35.6
**41.6** |34.9
57.7
59.5
**61.7** +YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6
33.1
37.0
**42.1** |35.4
58.2
60.7
**61.7** ```bash $ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 608 -Namespace(batch_size=32, cfg='yolov3-spp.cfg', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='yolov3-spp-ultralytics.pt') -Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB) +Namespace(batch_size=32, cfg='yolov3-spp', conf_thres=0.001, data='data/coco2014.data', device='', img_size=608, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='last82.pt') +Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB) - Class Images Targets P R mAP@0.5 F1: 100% 157/157 [04:25<00:00, 1.01s/it] - all 5e+03 3.51e+04 0.0453 0.885 0.609 0.0852 - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.417 - Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.616 + Class Images Targets P R mAP@0.5 F1: 100% 157/157 [03:12<00:00, 1.50it/s] + all 5e+03 3.51e+04 0.0573 0.871 0.611 0.106 + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.419 + Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.618 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.448 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242 + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.247 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.462 - Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.522 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.337 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.559 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.611 - Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.436 - Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.659 - Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.741 + Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.534 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.341 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.557 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.606 + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.440 + Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.649 + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.735 ``` # Reproduce Our Results