updates
This commit is contained in:
parent
77012f8f97
commit
e613bbc88c
3
train.py
3
train.py
|
@ -96,6 +96,9 @@ def train():
|
|||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||||
del pg0, pg1
|
||||
|
||||
# https://github.com/alphadl/lookahead.pytorch
|
||||
# optimizer = torch_utils.Lookahead(optimizer, k=5, alpha=0.5)
|
||||
|
||||
cutoff = -1 # backbone reaches to cutoff layer
|
||||
start_epoch = 0
|
||||
best_fitness = float('inf')
|
||||
|
|
|
@ -96,3 +96,73 @@ def load_classifier(name='resnet101', n=2):
|
|||
model.last_linear.weight = torch.nn.Parameter(torch.zeros(n, filters))
|
||||
model.last_linear.out_features = n
|
||||
return model
|
||||
|
||||
|
||||
from collections import defaultdict
|
||||
from torch.optim import Optimizer
|
||||
|
||||
class Lookahead(Optimizer):
|
||||
def __init__(self, optimizer, k=5, alpha=0.5):
|
||||
self.optimizer = optimizer
|
||||
self.k = k
|
||||
self.alpha = alpha
|
||||
self.param_groups = self.optimizer.param_groups
|
||||
self.state = defaultdict(dict)
|
||||
self.fast_state = self.optimizer.state
|
||||
for group in self.param_groups:
|
||||
group["counter"] = 0
|
||||
|
||||
def update(self, group):
|
||||
for fast in group["params"]:
|
||||
param_state = self.state[fast]
|
||||
if "slow_param" not in param_state:
|
||||
param_state["slow_param"] = torch.zeros_like(fast.data)
|
||||
param_state["slow_param"].copy_(fast.data)
|
||||
slow = param_state["slow_param"]
|
||||
slow += (fast.data - slow) * self.alpha
|
||||
fast.data.copy_(slow)
|
||||
|
||||
def update_lookahead(self):
|
||||
for group in self.param_groups:
|
||||
self.update(group)
|
||||
|
||||
def step(self, closure=None):
|
||||
loss = self.optimizer.step(closure)
|
||||
for group in self.param_groups:
|
||||
if group["counter"] == 0:
|
||||
self.update(group)
|
||||
group["counter"] += 1
|
||||
if group["counter"] >= self.k:
|
||||
group["counter"] = 0
|
||||
return loss
|
||||
|
||||
def state_dict(self):
|
||||
fast_state_dict = self.optimizer.state_dict()
|
||||
slow_state = {
|
||||
(id(k) if isinstance(k, torch.Tensor) else k): v
|
||||
for k, v in self.state.items()
|
||||
}
|
||||
fast_state = fast_state_dict["state"]
|
||||
param_groups = fast_state_dict["param_groups"]
|
||||
return {
|
||||
"fast_state": fast_state,
|
||||
"slow_state": slow_state,
|
||||
"param_groups": param_groups,
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
slow_state_dict = {
|
||||
"state": state_dict["slow_state"],
|
||||
"param_groups": state_dict["param_groups"],
|
||||
}
|
||||
fast_state_dict = {
|
||||
"state": state_dict["fast_state"],
|
||||
"param_groups": state_dict["param_groups"],
|
||||
}
|
||||
super(Lookahead, self).load_state_dict(slow_state_dict)
|
||||
self.optimizer.load_state_dict(fast_state_dict)
|
||||
self.fast_state = self.optimizer.state
|
||||
|
||||
def add_param_group(self, param_group):
|
||||
param_group["counter"] = 0
|
||||
self.optimizer.add_param_group(param_group)
|
Loading…
Reference in New Issue