From e4a797fc1ec612704ec7d5eae1e7b696b850e2c0 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Mon, 30 Dec 2019 13:09:16 -0800 Subject: [PATCH] updates --- utils/utils.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/utils/utils.py b/utils/utils.py index 1544d874..c017bc81 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -744,7 +744,9 @@ def kmeans_targets(path='data/coco64.txt', n=9, img_size=416): # from utils.uti for s, l in zip(dataset.shapes, dataset.labels): l[:, [1, 3]] *= s[0] # normalized to pixels l[:, [2, 4]] *= s[1] - l[:, 1:] *= img_size / max(s) * random.uniform(0.5, 1.5) # nominal img_size for training + l[:, 1:] *= img_size / max(s) + l = l.repeat(10, axis=0) # augment 10x + l *= np.random.uniform(0.5, 1.5, size=(l.shape[0], 1)) # multi-scale box wh = np.concatenate(dataset.labels, 0)[:, 3:5] # wh from cxywh # Kmeans calculation @@ -762,7 +764,7 @@ def kmeans_targets(path='data/coco64.txt', n=9, img_size=416): # from utils.uti # Measure IoUs iou = wh_iou(torch.Tensor(wh), torch.Tensor(k)) biou = iou.max(0)[0] # closest anchor IoU - print('Best Possible Recall (BPR): %.3f' % (biou > 0.2635).float().mean()) # BPR (best possible recall) + print('Best Possible Recall (BPR): %.3f' % (biou > 0.225).float().mean()) # BPR (best possible recall) # Print print('kmeans anchors (n=%g, img_size=%g, IoU=%.2f/%.2f/%.2f-min/mean/best): ' %