From df8529a74781a802abe1720d64de7591c4b64fda Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Thu, 26 Sep 2019 13:52:37 +0200 Subject: [PATCH] updates --- utils/torch_utils.py | 25 ++++++++++--------------- 1 file changed, 10 insertions(+), 15 deletions(-) diff --git a/utils/torch_utils.py b/utils/torch_utils.py index 7c099875..2971e33b 100644 --- a/utils/torch_utils.py +++ b/utils/torch_utils.py @@ -15,33 +15,28 @@ def init_seeds(seed=0): def select_device(device='', apex=False): - # device = '' or 'cpu' or '0' or '0,1' - if device.lower() == 'cpu': - pass - elif device: # Set environment variable if device is specified - assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device - os.environ['CUDA_VISIBLE_DEVICES'] = device + # device = 'cpu' or '0' or '0,1,2,3' + cpu_request = device.lower() == 'cpu' + if device and not cpu_request: # if device requested other than 'cpu' + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable + assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity - # apex if mixed precision training https://github.com/NVIDIA/apex - cuda = False if device == 'cpu' else torch.cuda.is_available() - device = torch.device('cuda:0' if cuda else 'cpu') - - if not cuda: - print('Using CPU') + cuda = False if cpu_request else torch.cuda.is_available() if cuda: c = 1024 ** 2 # bytes to MB ng = torch.cuda.device_count() x = [torch.cuda.get_device_properties(i) for i in range(ng)] - cuda_str = 'Using CUDA ' + ('Apex ' if apex else '') + cuda_str = 'Using CUDA ' + ('Apex ' if apex else '') # apex for mixed precision https://github.com/NVIDIA/apex for i in range(0, ng): if i == 1: - # torch.cuda.set_device(0) # OPTIONAL: Set GPU ID cuda_str = ' ' * len(cuda_str) print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" % (cuda_str, i, x[i].name, x[i].total_memory / c)) + else: + print('Using CPU') print('') # skip a line - return device + return torch.device('cuda:0' if cuda else 'cpu') def fuse_conv_and_bn(conv, bn):