diff --git a/utils/datasets.py b/utils/datasets.py index f83a17be..1f9b9e3f 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -370,7 +370,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing if not os.path.exists(Path(f).parent): os.makedirs(Path(f).parent) # make new output folder - b = x[1:] * np.array([w, h, w, h]) # box + b = x[1:] * [w, h, w, h] # box b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.3 + 30 # pad b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) @@ -731,7 +731,7 @@ def cutout(image, labels): return inter_area / box2_area # create random masks - scales = [0.5] * 1 # + [0.25] * 4 + [0.125] * 16 + [0.0625] * 64 + [0.03125] * 256 # image size fraction + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction for s in scales: mask_h = random.randint(1, int(h * s)) mask_w = random.randint(1, int(w * s)) @@ -743,14 +743,13 @@ def cutout(image, labels): ymax = min(h, ymin + mask_h) # apply random color mask - mask_color = [random.randint(0, 255) for _ in range(3)] - image[ymin:ymax, xmin:xmax] = mask_color + image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] # return unobscured labels if len(labels) and s > 0.03: box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area - labels = labels[ioa < 0.90] # remove >90% obscured labels + labels = labels[ioa < 0.60] # remove >60% obscured labels return labels