burnin update
This commit is contained in:
parent
0c7d7427e4
commit
da40084b37
15
train.py
15
train.py
|
@ -240,17 +240,16 @@ def train(hyp):
|
||||||
targets = targets.to(device)
|
targets = targets.to(device)
|
||||||
|
|
||||||
# Burn-in
|
# Burn-in
|
||||||
if ni <= n_burn * 2:
|
if ni <= n_burn:
|
||||||
model.gr = np.interp(ni, [0, n_burn * 2], [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
xi = [0, n_burn] # x interp
|
||||||
if ni == n_burn: # burnin complete
|
model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
||||||
print_model_biases(model)
|
accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
|
||||||
|
|
||||||
for j, x in enumerate(optimizer.param_groups):
|
for j, x in enumerate(optimizer.param_groups):
|
||||||
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||||
x['lr'] = np.interp(ni, [0, n_burn], [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||||
|
x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
|
||||||
if 'momentum' in x:
|
if 'momentum' in x:
|
||||||
x['momentum'] = np.interp(ni, [0, n_burn], [0.9, hyp['momentum']])
|
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
|
||||||
|
|
||||||
|
|
||||||
# Multi-Scale
|
# Multi-Scale
|
||||||
if opt.multi_scale:
|
if opt.multi_scale:
|
||||||
|
|
Loading…
Reference in New Issue