updates
This commit is contained in:
		
							parent
							
								
									d1abe51876
								
							
						
					
					
						commit
						d6edefa8ab
					
				| 
						 | 
					@ -34,6 +34,7 @@ def create_modules(module_defs):
 | 
				
			||||||
            if bn:
 | 
					            if bn:
 | 
				
			||||||
                modules.add_module('batch_norm_%d' % i, nn.BatchNorm2d(filters))
 | 
					                modules.add_module('batch_norm_%d' % i, nn.BatchNorm2d(filters))
 | 
				
			||||||
            if module_def['activation'] == 'leaky':
 | 
					            if module_def['activation'] == 'leaky':
 | 
				
			||||||
 | 
					                # modules.add_module('leaky_%d' % i, nn.PReLU(num_parameters=filters, init=0.10))
 | 
				
			||||||
                modules.add_module('leaky_%d' % i, nn.LeakyReLU(0.1, inplace=True))
 | 
					                modules.add_module('leaky_%d' % i, nn.LeakyReLU(0.1, inplace=True))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        elif module_def['type'] == 'maxpool':
 | 
					        elif module_def['type'] == 'maxpool':
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										56
									
								
								train.py
								
								
								
								
							
							
						
						
									
										56
									
								
								train.py
								
								
								
								
							| 
						 | 
					@ -11,44 +11,48 @@ from models import *
 | 
				
			||||||
from utils.datasets import *
 | 
					from utils.datasets import *
 | 
				
			||||||
from utils.utils import *
 | 
					from utils.utils import *
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 320 --epochs 1
 | 
				
			||||||
#      0.109      0.297       0.15      0.126       7.04      1.666      4.062     0.1845       42.6       3.34      12.61      8.338     0.2705      0.001         -4        0.9     0.0005   320 giou + best_anchor False
 | 
					#      0.109      0.297       0.15      0.126       7.04      1.666      4.062     0.1845       42.6       3.34      12.61      8.338     0.2705      0.001         -4        0.9     0.0005   320 giou + best_anchor False
 | 
				
			||||||
#      0.223      0.218      0.138      0.189       9.28      1.153      4.376    0.08263      24.28       3.05      20.93      2.842     0.2759   0.001357     -5.036     0.9158  0.0005722   mAP/F1 - 50/50 weighting
 | 
					#      0.223      0.218      0.138      0.189       9.28      1.153      4.376    0.08263      24.28       3.05      20.93      2.842     0.2759   0.001357     -5.036     0.9158  0.0005722   mAP/F1 - 50/50 weighting
 | 
				
			||||||
#      0.231      0.215      0.135      0.191       9.51      1.432      3.007    0.06082      24.87      3.477      24.13      2.802     0.3436   0.001127     -5.036     0.9232  0.0005874
 | 
					#      0.231      0.215      0.135      0.191       9.51      1.432      3.007    0.06082      24.87      3.477      24.13      2.802     0.3436   0.001127     -5.036     0.9232  0.0005874
 | 
				
			||||||
#      0.246      0.194      0.128      0.192       8.12      1.101      3.954     0.0817      22.83      3.967      19.83      1.779     0.3352   0.000895     -5.036     0.9238  0.0007973
 | 
					#      0.246      0.194      0.128      0.192       8.12      1.101      3.954     0.0817      22.83      3.967      19.83      1.779     0.3352   0.000895     -5.036     0.9238  0.0007973
 | 
				
			||||||
# 0.242	0.296	0.196	0.231	5.67	0.8541	4.286	0.1539	21.61	1.957	22.9	2.894	0.3689	0.001844	-4	0.913	0.000467  # ha
 | 
					#      0.187      0.237      0.144      0.186       14.6      1.607      4.202    0.09439      39.27      3.726      31.26      2.634      0.273   0.001542     -5.036     0.8364  0.0008393
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 320 --epochs 2
 | 
				
			||||||
 | 
					# 0.242	0.296	0.196	0.231	5.67	0.8541	4.286	0.1539	21.61	1.957	22.9	2.894	0.3689	0.001844	-4	0.913	0.000467  # ha 0.417 mAP @ epoch 100
 | 
				
			||||||
# 0.298	0.244	0.167	0.247	4.99	0.8896	4.067	0.1694	21.41	2.033	25.61	1.783	0.4115	0.00128	    -4	0.950	0.000377  # hb
 | 
					# 0.298	0.244	0.167	0.247	4.99	0.8896	4.067	0.1694	21.41	2.033	25.61	1.783	0.4115	0.00128	    -4	0.950	0.000377  # hb
 | 
				
			||||||
# 0.268	0.268	0.178	0.240	4.36	1.104	5.596	0.2087	14.47	2.599	16.27	2.406	0.4114	0.001585	-4	0.950	0.000524  # hc
 | 
					# 0.268	0.268	0.178	0.240	4.36	1.104	5.596	0.2087	14.47	2.599	16.27	2.406	0.4114	0.001585	-4	0.950	0.000524  # hc
 | 
				
			||||||
# 0.161	0.327	0.190	0.193	7.82	1.153	4.062	0.1845	24.28	3.05	20.93	2.842	0.2759	0.001357	-4	0.916	0.000572  # hd 320 --epochs 2
 | 
					# 0.161	0.327	0.190	0.193	7.82	1.153	4.062	0.1845	24.28	3.05	20.93	2.842	0.2759	0.001357	-4	0.916	0.000572  # hd 0.438 mAP @ epoch 100
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Training hyperparameters a
 | 
					 | 
				
			||||||
hyp = {'giou': 0.8541,  # giou loss gain
 | 
					 | 
				
			||||||
       'xy': 4.062,  # xy loss gain
 | 
					 | 
				
			||||||
       'wh': 0.1845,  # wh loss gain
 | 
					 | 
				
			||||||
       'cls': 21.61,  # cls loss gain
 | 
					 | 
				
			||||||
       'cls_pw': 1.957,  # cls BCELoss positive_weight
 | 
					 | 
				
			||||||
       'obj': 22.9,  # obj loss gain
 | 
					 | 
				
			||||||
       'obj_pw': 2.894,  # obj BCELoss positive_weight
 | 
					 | 
				
			||||||
       'iou_t': 0.3689,  # iou target-anchor training threshold
 | 
					 | 
				
			||||||
       'lr0': 0.001844,  # initial learning rate
 | 
					 | 
				
			||||||
       'lrf': -4.,  # final learning rate = lr0 * (10 ** lrf)
 | 
					 | 
				
			||||||
       'momentum': 0.913,  # SGD momentum
 | 
					 | 
				
			||||||
       'weight_decay': 0.000467}  # optimizer weight decay
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Training hyperparameters d
 | 
					# Training hyperparameters d
 | 
				
			||||||
# hyp = {'giou': 1.153,  # giou loss gain
 | 
					hyp = {'giou': 1.153,  # giou loss gain
 | 
				
			||||||
 | 
					       'xy': 4.062,  # xy loss gain
 | 
				
			||||||
 | 
					       'wh': 0.1845,  # wh loss gain
 | 
				
			||||||
 | 
					       'cls': 24.28,  # cls loss gain
 | 
				
			||||||
 | 
					       'cls_pw': 3.05,  # cls BCELoss positive_weight
 | 
				
			||||||
 | 
					       'obj': 20.93,  # obj loss gain
 | 
				
			||||||
 | 
					       'obj_pw': 2.842,  # obj BCELoss positive_weight
 | 
				
			||||||
 | 
					       'iou_t': 0.2759,  # iou target-anchor training threshold
 | 
				
			||||||
 | 
					       'lr0': 0.001357,  # initial learning rate
 | 
				
			||||||
 | 
					       'lrf': -4.,  # final learning rate = lr0 * (10 ** lrf)
 | 
				
			||||||
 | 
					       'momentum': 0.916,  # SGD momentum
 | 
				
			||||||
 | 
					       'weight_decay': 0.000572}  # optimizer weight decay
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# # Training hyperparameters e
 | 
				
			||||||
 | 
					# hyp = {'giou': 1.607,  # giou loss gain
 | 
				
			||||||
#        'xy': 4.062,  # xy loss gain
 | 
					#        'xy': 4.062,  # xy loss gain
 | 
				
			||||||
#        'wh': 0.1845,  # wh loss gain
 | 
					#        'wh': 0.1845,  # wh loss gain
 | 
				
			||||||
#        'cls': 24.28,  # cls loss gain
 | 
					#        'cls': 39.27,  # cls loss gain
 | 
				
			||||||
#        'cls_pw': 3.05,  # cls BCELoss positive_weight
 | 
					#        'cls_pw': 3.726,  # cls BCELoss positive_weight
 | 
				
			||||||
#        'obj': 20.93,  # obj loss gain
 | 
					#        'obj': 31.26,  # obj loss gain
 | 
				
			||||||
#        'obj_pw': 2.842,  # obj BCELoss positive_weight
 | 
					#        'obj_pw': 2.634,  # obj BCELoss positive_weight
 | 
				
			||||||
#        'iou_t': 0.2759,  # iou target-anchor training threshold
 | 
					#        'iou_t': 0.273,  # iou target-anchor training threshold
 | 
				
			||||||
#        'lr0': 0.001357,  # initial learning rate
 | 
					#        'lr0': 0.001542,  # initial learning rate
 | 
				
			||||||
#        'lrf': -4.,  # final learning rate = lr0 * (10 ** lrf)
 | 
					#        'lrf': -4.,  # final learning rate = lr0 * (10 ** lrf)
 | 
				
			||||||
#        'momentum': 0.916,  # SGD momentum
 | 
					#        'momentum': 0.8364,  # SGD momentum
 | 
				
			||||||
#        'weight_decay': 0.000572}  # optimizer weight decay
 | 
					#        'weight_decay': 0.0008393}  # optimizer weight decay
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def train(cfg,
 | 
					def train(cfg,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -534,11 +534,12 @@ def coco_only_people(path='../coco/labels/val2014/'):
 | 
				
			||||||
            print(labels.shape[0], file)
 | 
					            print(labels.shape[0], file)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def select_best_evolve(path='../../Downloads/evolve*.txt'):  # from utils.utils import *; select_best_evolve()
 | 
					def select_best_evolve(path='evolve*.txt'):  # from utils.utils import *; select_best_evolve()
 | 
				
			||||||
    # Find best evolved mutation
 | 
					    # Find best evolved mutation
 | 
				
			||||||
    for file in sorted(glob.glob(path)):
 | 
					    for file in sorted(glob.glob(path)):
 | 
				
			||||||
        x = np.loadtxt(file, dtype=np.float32)
 | 
					        x = np.loadtxt(file, dtype=np.float32)
 | 
				
			||||||
        print(file, x[x[:, 2].argmax()])
 | 
					        fitness = x[:, 2] * 0.5 + x[:, 3] * 0.5  # weighted mAP and F1 combination
 | 
				
			||||||
 | 
					        print(file, x[fitness.argmax()])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def kmeans_targets(path='./data/coco_64img.txt'):  # from utils.utils import *; kmeans_targets()
 | 
					def kmeans_targets(path='./data/coco_64img.txt'):  # from utils.utils import *; kmeans_targets()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue