updates
This commit is contained in:
parent
5a7313ca5a
commit
d673b6c5f4
|
@ -1,4 +1,5 @@
|
|||
import os
|
||||
import onnx
|
||||
from onnx import onnx_pb
|
||||
from onnx_coreml import convert
|
||||
import glob
|
||||
|
@ -8,7 +9,6 @@ import glob
|
|||
# http://machinethink.net/blog/mobilenet-ssdlite-coreml/
|
||||
# https://github.com/hollance/YOLO-CoreML-MPSNNGraph
|
||||
|
||||
|
||||
def main():
|
||||
os.system('rm -rf saved_models && mkdir saved_models')
|
||||
files = glob.glob('saved_models/*.onnx') + glob.glob('../yolov3/weights/*.onnx')
|
||||
|
@ -17,33 +17,65 @@ def main():
|
|||
# 1. ONNX to CoreML
|
||||
name = 'saved_models/' + f.split('/')[-1].replace('.onnx', '')
|
||||
|
||||
# # Load the ONNX model
|
||||
model = onnx.load(f)
|
||||
|
||||
# Check that the IR is well formed
|
||||
print(onnx.checker.check_model(model))
|
||||
|
||||
# Print a human readable representation of the graph
|
||||
print(onnx.helper.printable_graph(model.graph))
|
||||
|
||||
model_file = open(f, 'rb')
|
||||
model_proto = onnx_pb.ModelProto()
|
||||
model_proto.ParseFromString(model_file.read())
|
||||
coreml_model = convert(model_proto, image_input_names=['0'])
|
||||
# coreml_model.save(model_out)
|
||||
yolov3_model = convert(model_proto, image_input_names=['0'], preprocessing_args={'image_scale': 1. / 255})
|
||||
|
||||
# 2. Reduce model to FP16, change outputs to DOUBLE and save
|
||||
import coremltools
|
||||
|
||||
spec = coreml_model.get_spec()
|
||||
spec = yolov3_model.get_spec()
|
||||
for i in range(2):
|
||||
spec.description.output[i].type.multiArrayType.dataType = \
|
||||
coremltools.proto.FeatureTypes_pb2.ArrayFeatureType.ArrayDataType.Value('DOUBLE')
|
||||
|
||||
spec = coremltools.utils.convert_neural_network_spec_weights_to_fp16(spec)
|
||||
coreml_model = coremltools.models.MLModel(spec)
|
||||
yolov3_model = coremltools.models.MLModel(spec)
|
||||
|
||||
num_classes = 80
|
||||
num_anchors = 507
|
||||
spec.description.output[0].type.multiArrayType.shape.append(num_classes)
|
||||
spec.description.output[0].type.multiArrayType.shape.append(num_anchors)
|
||||
spec.description.output[0].type.multiArrayType.shape.append(num_classes)
|
||||
# spec.description.output[0].type.multiArrayType.shape.append(1)
|
||||
|
||||
spec.description.output[1].type.multiArrayType.shape.append(4)
|
||||
spec.description.output[1].type.multiArrayType.shape.append(num_anchors)
|
||||
coreml_model.save(name + '.mlmodel')
|
||||
spec.description.output[1].type.multiArrayType.shape.append(4)
|
||||
# spec.description.output[1].type.multiArrayType.shape.append(1)
|
||||
|
||||
# rename
|
||||
# input_mlmodel = input_tensor.replace(":", "__").replace("/", "__")
|
||||
# class_output_mlmodel = class_output_tensor.replace(":", "__").replace("/", "__")
|
||||
# bbox_output_mlmodel = bbox_output_tensor.replace(":", "__").replace("/", "__")
|
||||
#
|
||||
# for i in range(len(spec.neuralNetwork.layers)):
|
||||
# if spec.neuralNetwork.layers[i].input[0] == input_mlmodel:
|
||||
# spec.neuralNetwork.layers[i].input[0] = 'image'
|
||||
# if spec.neuralNetwork.layers[i].output[0] == class_output_mlmodel:
|
||||
# spec.neuralNetwork.layers[i].output[0] = 'scores'
|
||||
# if spec.neuralNetwork.layers[i].output[0] == bbox_output_mlmodel:
|
||||
# spec.neuralNetwork.layers[i].output[0] = 'boxes'
|
||||
|
||||
spec.neuralNetwork.preprocessing[0].featureName = '0'
|
||||
|
||||
yolov3_model.save(name + '.mlmodel')
|
||||
print(spec.description)
|
||||
|
||||
# 2.5. Try to Predict:
|
||||
from PIL import Image
|
||||
img = Image.open('../yolov3/data/samples/zidane_416.jpg')
|
||||
out = yolov3_model.predict({'0': img})
|
||||
print(out['141'].shape, out['143'].shape)
|
||||
|
||||
# 3. Create NMS protobuf
|
||||
import numpy as np
|
||||
|
||||
|
@ -51,7 +83,7 @@ def main():
|
|||
nms_spec.specificationVersion = 3
|
||||
|
||||
for i in range(2):
|
||||
decoder_output = coreml_model._spec.description.output[i].SerializeToString()
|
||||
decoder_output = yolov3_model._spec.description.output[i].SerializeToString()
|
||||
|
||||
nms_spec.description.input.add()
|
||||
nms_spec.description.input[i].ParseFromString(decoder_output)
|
||||
|
@ -74,15 +106,15 @@ def main():
|
|||
del ma_type.shape[:]
|
||||
|
||||
nms = nms_spec.nonMaximumSuppression
|
||||
nms.confidenceInputFeatureName = '133' # 1x507x80
|
||||
nms.coordinatesInputFeatureName = '134' # 1x507x4
|
||||
nms.confidenceInputFeatureName = '141' # 1x507x80
|
||||
nms.coordinatesInputFeatureName = '143' # 1x507x4
|
||||
nms.confidenceOutputFeatureName = 'confidence'
|
||||
nms.coordinatesOutputFeatureName = 'coordinates'
|
||||
nms.iouThresholdInputFeatureName = 'iouThreshold'
|
||||
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
|
||||
|
||||
nms.iouThreshold = 0.6
|
||||
nms.confidenceThreshold = 0.4
|
||||
nms.confidenceThreshold = 0.9
|
||||
nms.pickTop.perClass = True
|
||||
|
||||
labels = np.loadtxt('../yolov3/data/coco.names', dtype=str, delimiter='\n')
|
||||
|
@ -91,12 +123,40 @@ def main():
|
|||
nms_model = coremltools.models.MLModel(nms_spec)
|
||||
nms_model.save(name + '_nms.mlmodel')
|
||||
|
||||
# out_nms = nms_model.predict({
|
||||
# '143': out['143'].squeeze().reshape((80, 507)),
|
||||
# '144': out['144'].squeeze().reshape((4, 507))
|
||||
# })
|
||||
# print(out_nms['confidence'].shape, out_nms['coordinates'].shape)
|
||||
|
||||
# # # 3.5 Add Softmax model
|
||||
# from coremltools.models import datatypes
|
||||
# from coremltools.models import neural_network
|
||||
#
|
||||
# input_features = [
|
||||
# ("141", datatypes.Array(num_anchors, num_classes, 1)),
|
||||
# ("143", datatypes.Array(num_anchors, 4, 1))
|
||||
# ]
|
||||
#
|
||||
# output_features = [
|
||||
# ("141", datatypes.Array(num_anchors, num_classes, 1)),
|
||||
# ("143", datatypes.Array(num_anchors, 4, 1))
|
||||
# ]
|
||||
#
|
||||
# builder = neural_network.NeuralNetworkBuilder(input_features, output_features)
|
||||
# builder.add_softmax(name="softmax_pcls",
|
||||
# dim=(0, 3, 2, 1),
|
||||
# input_name="scores",
|
||||
# output_name="permute_scores_output")
|
||||
# softmax_model = coremltools.models.MLModel(builder.spec)
|
||||
# softmax_model.save("softmax.mlmodel")
|
||||
|
||||
# 4. Pipeline models togethor
|
||||
from coremltools.models import datatypes
|
||||
# from coremltools.models import neural_network
|
||||
from coremltools.models.pipeline import Pipeline
|
||||
|
||||
input_features = [('image', datatypes.Array(3, 416, 416)),
|
||||
input_features = [('0', datatypes.Array(3, 416, 416)),
|
||||
('iouThreshold', datatypes.Double()),
|
||||
('confidenceThreshold', datatypes.Double())]
|
||||
|
||||
|
@ -105,16 +165,21 @@ def main():
|
|||
pipeline = Pipeline(input_features, output_features)
|
||||
|
||||
# Add 3rd dimension of size 1 (apparently not needed, produces error on compile)
|
||||
ssd_output = coreml_model._spec.description.output
|
||||
ssd_output[0].type.multiArrayType.shape[:] = [num_classes, num_anchors, 1]
|
||||
ssd_output[1].type.multiArrayType.shape[:] = [4, num_anchors, 1]
|
||||
yolov3_output = yolov3_model._spec.description.output
|
||||
yolov3_output[0].type.multiArrayType.shape[:] = [num_anchors, num_classes, 1]
|
||||
yolov3_output[1].type.multiArrayType.shape[:] = [num_anchors, 4, 1]
|
||||
|
||||
nms_input = nms_model._spec.description.input
|
||||
for i in range(2):
|
||||
nms_input[i].type.multiArrayType.shape[:] = yolov3_output[i].type.multiArrayType.shape[:]
|
||||
|
||||
# And now we can add the three models, in order:
|
||||
pipeline.add_model(coreml_model)
|
||||
pipeline.add_model(yolov3_model)
|
||||
|
||||
pipeline.add_model(nms_model)
|
||||
|
||||
# Correct datatypes
|
||||
pipeline.spec.description.input[0].ParseFromString(coreml_model._spec.description.input[0].SerializeToString())
|
||||
pipeline.spec.description.input[0].ParseFromString(yolov3_model._spec.description.input[0].SerializeToString())
|
||||
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
||||
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
||||
|
||||
|
|
Loading…
Reference in New Issue