Fixed NMS bug causing big CPU usage. Note that using 'cross_class_nms' still takes a huge amount of time and should be fixed somehow.
This commit is contained in:
parent
a46e500f9e
commit
d41f85702d
|
@ -285,8 +285,6 @@ def build_targets(pred_boxes, pred_conf, pred_cls, target, anchor_wh, nA, nC, nG
|
||||||
|
|
||||||
|
|
||||||
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
||||||
prediction = prediction.cpu()
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Removes detections with lower object confidence score than 'conf_thres' and performs
|
Removes detections with lower object confidence score than 'conf_thres' and performs
|
||||||
Non-Maximum Suppression to further filter detections.
|
Non-Maximum Suppression to further filter detections.
|
||||||
|
@ -302,15 +300,17 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
||||||
# cross-class NMS
|
# cross-class NMS
|
||||||
cross_class_nms = False
|
cross_class_nms = False
|
||||||
if cross_class_nms:
|
if cross_class_nms:
|
||||||
thresh = 0.85
|
# thresh = 0.85
|
||||||
|
thresh = nms_thres
|
||||||
a = pred.clone()
|
a = pred.clone()
|
||||||
a = a[np.argsort(-a[:, 4])] # sort best to worst
|
_, indices = torch.sort(-a[:, 4], 0) # sort best to worst
|
||||||
|
a = a[indices]
|
||||||
radius = 30 # area to search for cross-class ious
|
radius = 30 # area to search for cross-class ious
|
||||||
for i in range(len(a)):
|
for i in range(len(a)):
|
||||||
if i >= len(a) - 1:
|
if i >= len(a) - 1:
|
||||||
break
|
break
|
||||||
|
|
||||||
close = (np.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (np.abs(a[i, 1] - a[i + 1:, 1]) < radius)
|
close = (torch.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (torch.abs(a[i, 1] - a[i + 1:, 1]) < radius)
|
||||||
close = close.nonzero()
|
close = close.nonzero()
|
||||||
|
|
||||||
if len(close) > 0:
|
if len(close) > 0:
|
||||||
|
@ -324,10 +324,11 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
||||||
a = a[mask]
|
a = a[mask]
|
||||||
pred = a
|
pred = a
|
||||||
|
|
||||||
x, y, w, h = pred[:, 0].numpy(), pred[:, 1].numpy(), pred[:, 2].numpy(), pred[:, 3].numpy()
|
x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
|
||||||
a = w * h # area
|
a = w * h # area
|
||||||
ar = w / (h + 1e-16) # aspect ratio
|
ar = w / (h + 1e-16) # aspect ratio
|
||||||
log_w, log_h, log_a, log_ar = np.log(w), np.log(h), np.log(a), np.log(ar)
|
|
||||||
|
log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
|
||||||
|
|
||||||
# n = len(w)
|
# n = len(w)
|
||||||
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
|
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
|
||||||
|
@ -338,8 +339,10 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
||||||
|
|
||||||
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
|
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
|
||||||
|
|
||||||
v = ((pred[:, 4] > conf_thres) & (class_prob > .3)).numpy()
|
v = ((pred[:, 4] > conf_thres) & (class_prob > .3))
|
||||||
v = v.nonzero()
|
v = v.nonzero().squeeze()
|
||||||
|
if len(v.shape) == 0:
|
||||||
|
v = v.unsqueeze(0)
|
||||||
|
|
||||||
pred = pred[v]
|
pred = pred[v]
|
||||||
class_prob = class_prob[v]
|
class_prob = class_prob[v]
|
||||||
|
@ -363,7 +366,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
|
||||||
# Iterate through all predicted classes
|
# Iterate through all predicted classes
|
||||||
unique_labels = detections[:, -1].cpu().unique()
|
unique_labels = detections[:, -1].cpu().unique()
|
||||||
if prediction.is_cuda:
|
if prediction.is_cuda:
|
||||||
unique_labels = unique_labels.cuda()
|
unique_labels = unique_labels.cuda(prediction.device)
|
||||||
|
|
||||||
nms_style = 'OR' # 'AND' or 'OR' (classical)
|
nms_style = 'OR' # 'AND' or 'OR' (classical)
|
||||||
for c in unique_labels:
|
for c in unique_labels:
|
||||||
|
|
Loading…
Reference in New Issue