per-class mAP report
This commit is contained in:
parent
f79e7ffa76
commit
d336e0053d
|
@ -99,6 +99,8 @@ class YOLOLayer(nn.Module):
|
|||
self.scaled_anchors = torch.FloatTensor([(a_w / stride, a_h / stride) for a_w, a_h in anchors])
|
||||
self.anchor_w = self.scaled_anchors[:, 0:1].view((1, nA, 1, 1))
|
||||
self.anchor_h = self.scaled_anchors[:, 1:2].view((1, nA, 1, 1))
|
||||
self.weights = class_weights()
|
||||
|
||||
|
||||
def forward(self, p, targets=None, requestPrecision=False):
|
||||
FT = torch.cuda.FloatTensor if p.is_cuda else torch.FloatTensor
|
||||
|
@ -110,6 +112,7 @@ class YOLOLayer(nn.Module):
|
|||
if p.is_cuda and not self.grid_x.is_cuda:
|
||||
self.grid_x, self.grid_y = self.grid_x.cuda(), self.grid_y.cuda()
|
||||
self.anchor_w, self.anchor_h = self.anchor_w.cuda(), self.anchor_h.cuda()
|
||||
self.weights = self.weights.cuda()
|
||||
|
||||
# p.view(12, 255, 13, 13) -- > (12, 3, 13, 13, 80) # (bs, anchors, grid, grid, classes + xywh)
|
||||
p = p.view(bs, self.nA, self.bbox_attrs, nG, nG).permute(0, 1, 3, 4, 2).contiguous() # prediction
|
||||
|
|
15
test.py
15
test.py
|
@ -1,4 +1,5 @@
|
|||
import argparse
|
||||
|
||||
from models import *
|
||||
from utils.datasets import *
|
||||
from utils.utils import *
|
||||
|
@ -48,9 +49,11 @@ dataloader = load_images_and_labels(test_path, batch_size=opt.batch_size, img_si
|
|||
|
||||
print('Compute mAP...')
|
||||
|
||||
nC = 80 # number of classes
|
||||
correct = 0
|
||||
targets = None
|
||||
outputs, mAPs, TP, confidence, pred_class, target_class = [], [], [], [], [], []
|
||||
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
|
||||
for batch_i, (imgs, targets) in enumerate(dataloader):
|
||||
imgs = imgs.to(device)
|
||||
|
||||
|
@ -105,7 +108,11 @@ for batch_i, (imgs, targets) in enumerate(dataloader):
|
|||
correct.append(0)
|
||||
|
||||
# Compute Average Precision (AP) per class
|
||||
AP = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6], target_cls=target_cls)
|
||||
AP, AP_class = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6], target_cls=target_cls)
|
||||
|
||||
# Accumulate AP per class
|
||||
AP_accum_count += np.bincount(AP_class, minlength=nC)
|
||||
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
|
||||
|
||||
# Compute mean AP for this image
|
||||
mAP = AP.mean()
|
||||
|
@ -116,4 +123,10 @@ for batch_i, (imgs, targets) in enumerate(dataloader):
|
|||
# Print image mAP and running mean mAP
|
||||
print('+ Sample [%d/%d] AP: %.4f (%.4f)' % (len(mAPs), len(dataloader) * opt.batch_size, mAP, np.mean(mAPs)))
|
||||
|
||||
# Print mAP per class
|
||||
classes = load_classes(opt.class_path) # Extracts class labels from file
|
||||
for i, c in enumerate(classes):
|
||||
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
|
||||
|
||||
# Print mAP
|
||||
print('Mean Average Precision: %.4f' % np.mean(mAPs))
|
||||
|
|
|
@ -130,7 +130,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
|
|||
# AP from recall-precision curve
|
||||
ap.append(compute_ap(recall, precision))
|
||||
|
||||
return np.array(ap)
|
||||
return np.array(ap), unique_classes.astype('int32')
|
||||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
|
|
Loading…
Reference in New Issue