per-class mAP report

This commit is contained in:
Glenn Jocher 2018-10-10 17:07:21 +02:00
parent f79e7ffa76
commit d336e0053d
3 changed files with 19 additions and 3 deletions

View File

@ -99,6 +99,8 @@ class YOLOLayer(nn.Module):
self.scaled_anchors = torch.FloatTensor([(a_w / stride, a_h / stride) for a_w, a_h in anchors])
self.anchor_w = self.scaled_anchors[:, 0:1].view((1, nA, 1, 1))
self.anchor_h = self.scaled_anchors[:, 1:2].view((1, nA, 1, 1))
self.weights = class_weights()
def forward(self, p, targets=None, requestPrecision=False):
FT = torch.cuda.FloatTensor if p.is_cuda else torch.FloatTensor
@ -110,6 +112,7 @@ class YOLOLayer(nn.Module):
if p.is_cuda and not self.grid_x.is_cuda:
self.grid_x, self.grid_y = self.grid_x.cuda(), self.grid_y.cuda()
self.anchor_w, self.anchor_h = self.anchor_w.cuda(), self.anchor_h.cuda()
self.weights = self.weights.cuda()
# p.view(12, 255, 13, 13) -- > (12, 3, 13, 13, 80) # (bs, anchors, grid, grid, classes + xywh)
p = p.view(bs, self.nA, self.bbox_attrs, nG, nG).permute(0, 1, 3, 4, 2).contiguous() # prediction

15
test.py
View File

@ -1,4 +1,5 @@
import argparse
from models import *
from utils.datasets import *
from utils.utils import *
@ -48,9 +49,11 @@ dataloader = load_images_and_labels(test_path, batch_size=opt.batch_size, img_si
print('Compute mAP...')
nC = 80 # number of classes
correct = 0
targets = None
outputs, mAPs, TP, confidence, pred_class, target_class = [], [], [], [], [], []
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
for batch_i, (imgs, targets) in enumerate(dataloader):
imgs = imgs.to(device)
@ -105,7 +108,11 @@ for batch_i, (imgs, targets) in enumerate(dataloader):
correct.append(0)
# Compute Average Precision (AP) per class
AP = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6], target_cls=target_cls)
AP, AP_class = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6], target_cls=target_cls)
# Accumulate AP per class
AP_accum_count += np.bincount(AP_class, minlength=nC)
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
# Compute mean AP for this image
mAP = AP.mean()
@ -116,4 +123,10 @@ for batch_i, (imgs, targets) in enumerate(dataloader):
# Print image mAP and running mean mAP
print('+ Sample [%d/%d] AP: %.4f (%.4f)' % (len(mAPs), len(dataloader) * opt.batch_size, mAP, np.mean(mAPs)))
# Print mAP per class
classes = load_classes(opt.class_path) # Extracts class labels from file
for i, c in enumerate(classes):
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
# Print mAP
print('Mean Average Precision: %.4f' % np.mean(mAPs))

View File

@ -130,7 +130,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
# AP from recall-precision curve
ap.append(compute_ap(recall, precision))
return np.array(ap)
return np.array(ap), unique_classes.astype('int32')
def compute_ap(recall, precision):