This commit is contained in:
Glenn Jocher 2019-09-10 01:34:23 +02:00
parent 4445715f4c
commit d1b6929043
2 changed files with 114 additions and 44 deletions

View File

@ -11,6 +11,7 @@ def detect(save_txt=False, save_img=False, stream_img=False):
img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, half = opt.output, opt.source, opt.weights, opt.half
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http')
streams = source == 'streams.txt'
# Initialize
device = torch_utils.select_device(force_cpu=ONNX_EXPORT)
@ -47,7 +48,9 @@ def detect(save_txt=False, save_img=False, stream_img=False):
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
if streams:
dataset = LoadStreams(source, img_size=img_size, half=half)
elif webcam:
stream_img = True
dataset = LoadWebcam(source, img_size=img_size, half=half)
else:
@ -60,56 +63,63 @@ def detect(save_txt=False, save_img=False, stream_img=False):
# Run inference
t0 = time.time()
for path, img, im0, vid_cap in dataset:
for path, img, im0s, vid_cap in dataset:
t = time.time()
save_path = str(Path(out) / Path(path).name)
# Get detections
img = torch.from_numpy(img).unsqueeze(0).to(device)
img = torch.from_numpy(img).to(device)
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred, _ = model(img)
det = non_max_suppression(pred.float(), opt.conf_thres, opt.nms_thres)[0]
s = '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, classes[int(c)]) # add to string
# Write results
for *xyxy, conf, _, cls in det:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or stream_img: # Add bbox to image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
print('%sDone. (%.3fs)' % (s, time.time() - t))
# Stream results
if stream_img:
cv2.imshow(weights, im0)
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
for i, det in enumerate(non_max_suppression(pred, opt.conf_thres, opt.nms_thres)): # detections per image
if streams: # batch_size > 1
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
p, s, im0 = path, '', im0s
fps = vid_cap.get(cv2.CAP_PROP_FPS)
width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (width, height))
vid_writer.write(im0)
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, classes[int(c)]) # add to string
# Write results
for *xyxy, conf, _, cls in det:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or stream_img: # Add bbox to image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
print('%sDone. (%.3fs)' % (s, time.time() - t))
# Stream results
if stream_img:
cv2.imshow(p, im0)
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)

View File

@ -3,7 +3,9 @@ import math
import os
import random
import shutil
import time
from pathlib import Path
from threading import Thread
import cv2
import numpy as np
@ -183,6 +185,64 @@ class LoadWebcam: # for inference
return 0
class LoadStreams: # multiple IP or RTSP cameras
def __init__(self, path='streams.txt', img_size=416, half=False):
self.img_size = img_size
self.half = half # half precision fp16 images
with open(path, 'r') as f:
sources = f.read().splitlines()
n = len(sources)
self.imgs = [None] * n
self.sources = sources
for i, s in enumerate(sources):
# Start the thread to read frames from the video stream
cap = cv2.VideoCapture(0 if s == '0' else s)
fps = cap.get(cv2.CAP_PROP_FPS) % 100
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print('%g/%g: %gx%g at %.2f FPS %s...' % (i + 1, n, width, height, fps, s))
thread = Thread(target=self.update, args=([i, cap]))
thread.daemon = True
thread.start()
print('') # newline
time.sleep(0.5)
def update(self, index, cap):
# Read next stream frame in a daemon thread
while cap.isOpened():
_, self.imgs[index] = cap.read()
time.sleep(0.030) # 33.3 FPS to keep buffer empty
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # 'q' to quit
cv2.destroyAllWindows()
raise StopIteration
# Letterbox
img = [letterbox(x, new_shape=self.img_size, mode='square')[0] for x in img0]
# Stack
img = np.stack(img, 0)
# Normalize RGB
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float16 if self.half else np.float32) # uint8 to fp16/fp32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return self.sources, img, img0, None
def __len__(self):
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=True, image_weights=False,
cache_images=False):