updates
This commit is contained in:
parent
efe3c319b5
commit
d197c0be75
11
utils/gcp.sh
11
utils/gcp.sh
|
@ -3,10 +3,10 @@
|
|||
# New VM
|
||||
rm -rf sample_data yolov3
|
||||
git clone https://github.com/ultralytics/yolov3
|
||||
git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex
|
||||
#git clone https://github.com/NVIDIA/apex && cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . --user && cd .. && rm -rf apex
|
||||
sudo conda install -yc conda-forge scikit-image pycocotools
|
||||
python3 -c "from yolov3.utils.google_utils import gdrive_download; gdrive_download('193Zp_ye-3qXMonR1nZj3YyxMtQkMy50k','coco2014.zip')"
|
||||
# python3 -c "from yolov3.utils.google_utils import gdrive_download; gdrive_download('1WQT6SOktSe8Uw6r10-2JhbEhMY5DJaph','coco2017.zip')"
|
||||
# python3 -c "from yolov3.utils.google_utils import gdrive_download; gdrive_download('193Zp_ye-3qXMonR1nZj3YyxMtQkMy50k','coco2014.zip')"
|
||||
python3 -c "from yolov3.utils.google_utils import gdrive_download; gdrive_download('1WQT6SOktSe8Uw6r10-2JhbEhMY5DJaph','coco2017.zip')"
|
||||
sudo shutdown
|
||||
|
||||
# Re-clone
|
||||
|
@ -38,7 +38,7 @@ python3 detect.py
|
|||
python3 test.py --save-json
|
||||
|
||||
# Evolve
|
||||
t=ultralytics/yolov3:v179
|
||||
t=ultralytics/yolov3:v189
|
||||
sudo docker kill $(sudo docker ps -a -q --filter ancestor=$t)
|
||||
for i in 0
|
||||
do
|
||||
|
@ -234,7 +234,10 @@ t=ultralytics/yolov3:v180 && sudo docker pull $t && sudo nvidia-docker run -it -
|
|||
t=ultralytics/yolov3:v183 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name 181 --cfg yolov3s9a-640.cfg
|
||||
t=ultralytics/yolov3:v183 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name 182 --cfg yolov3s9a-320-640.cfg
|
||||
t=ultralytics/yolov3:v183 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name 183 --cfg yolov3s15a-640.cfg
|
||||
t=ultralytics/yolov3:v183 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name 184 --cfg yolov3s15a-320-640.cfg
|
||||
|
||||
t=ultralytics/yolov3:v185 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name 185
|
||||
t=ultralytics/yolov3:v186 && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name 186
|
||||
n=187 && t=ultralytics/yolov3:v$n && sudo docker pull $t && sudo nvidia-docker run -it --ipc=host -v "$(pwd)"/coco:/usr/src/coco $t python3 train.py --data coco2014.data --img-size 640 --epochs 10 --batch-size 22 --accumulate 3 --weights '' --arc defaultpw --pre --multi --bucket yolov4 --name $n
|
||||
|
||||
|
||||
|
|
|
@ -778,7 +778,7 @@ def kmean_anchors(path='../coco/train2017.txt', n=9, img_size=(320, 640)):
|
|||
else:
|
||||
# Kmeans calculation
|
||||
from scipy.cluster.vq import kmeans
|
||||
print('Running kmeans on %g points...' % len(wh))
|
||||
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
||||
s = wh.std(0) # sigmas for whitening
|
||||
k, dist = kmeans(wh / s, n, iter=20) # points, mean distance
|
||||
k *= s
|
||||
|
@ -800,7 +800,7 @@ def kmean_anchors(path='../coco/train2017.txt', n=9, img_size=(320, 640)):
|
|||
fg = fitness(thr, wh, kg)
|
||||
if fg > f:
|
||||
f, k = fg, kg.copy()
|
||||
print(fg, list(k.round().reshape(-1)))
|
||||
print_results(thr, wh, k)
|
||||
k = print_results(thr, wh, k)
|
||||
|
||||
return k
|
||||
|
|
Loading…
Reference in New Issue