This commit is contained in:
glenn-jocher 2019-07-01 17:14:42 +02:00
parent 05358accbb
commit cf51cf9c99
1 changed files with 20 additions and 33 deletions

View File

@ -294,28 +294,20 @@ def print_mutation(hyp, results):
b = '%11.4g' * len(hyp) % tuple(hyp.values()) # hyperparam values b = '%11.4g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%11.3g' * len(results) % results # results (P, R, mAP, F1, test_loss) c = '%11.3g' * len(results) % results # results (P, R, mAP, F1, test_loss)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
with open('evolve.txt', 'a') as f:
f.write(c + b + '\n')
cloud_evolve = False if opt.cloud_evolve:
if cloud_evolve: os.system('gsutil cp gs://yolov4/evolve.txt .') # download evolve.txt
# download cloud_evolve.txt with open('evolve.txt', 'a') as f: # append result to evolve.txt
cloud_file = 'https://storage.googleapis.com/yolov4/cloud_evolve.txt' f.write(c + b + '\n')
local_file = cloud_file.replace('https://', '') os.system('gsutil cp evolve.txt gs://yolov4') # upload evolve.txt
name = Path(local_file).name else:
google_utils.download_blob(bucket_name='yolov4', source_blob_name=name, destination_file_name=local_file) with open('evolve.txt', 'a') as f:
# add result to local cloud_evolve.txt
with open(local_file, 'a') as f:
f.write(c + b + '\n') f.write(c + b + '\n')
# upload cloud_evolve.txt
google_utils.upload_blob(bucket_name='yolov4', source_file_name=local_file, destination_blob_name=name)
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=100, help='number of epochs') parser.add_argument('--epochs', type=int, default=1, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=8, help='batch size') parser.add_argument('--batch-size', type=int, default=8, help='batch size')
parser.add_argument('--accumulate', type=int, default=8, help='number of batches to accumulate before optimizing') parser.add_argument('--accumulate', type=int, default=8, help='number of batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path') parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
@ -329,10 +321,12 @@ if __name__ == '__main__':
parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--giou', action='store_true', help='use GIoU loss instead of xy, wh loss') parser.add_argument('--giou', action='store_true', help='use GIoU loss instead of xy, wh loss')
parser.add_argument('--evolve', action='store_true', help='run hyperparameter evolution') parser.add_argument('--evolve', action='store_true', help='run hyperparameter evolution')
parser.add_argument('--cloud_evolve', action='store_true', help='--evolve from a central source')
parser.add_argument('--var', default=0, type=int, help='debug variable') parser.add_argument('--var', default=0, type=int, help='debug variable')
opt = parser.parse_args() opt = parser.parse_args()
print(opt) print(opt)
opt.evolve = opt.cloud_evolve or opt.evolve
if opt.evolve: if opt.evolve:
opt.notest = True # only test final epoch opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint opt.nosave = True # only save final checkpoint
@ -347,16 +341,17 @@ if __name__ == '__main__':
# Evolve hyperparameters (optional) # Evolve hyperparameters (optional)
if opt.evolve: if opt.evolve:
best_fitness = results[2] # use mAP for fitness
# Write mutation results
print_mutation(hyp, results)
gen = 1000 # generations to evolve gen = 1000 # generations to evolve
for _ in range(gen): print_mutation(hyp, results) # Write mutation results
# Mutate hyperparameters for _ in range(gen):
old_hyp = hyp.copy() # Get best hyperparamters
x = np.loadtxt('evolve.txt', ndmin=2)
x = x[x[:, 2].argmax()] # select best mAP for fitness (col 2)
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 5]
# Mutate
init_seeds(seed=int(time.time())) init_seeds(seed=int(time.time()))
s = [.2, .2, .2, .2, .2, .2, .2, .2, .2 * 0, .2 * 0, .05 * 0, .2 * 0] # fractional sigmas s = [.2, .2, .2, .2, .2, .2, .2, .2, .2 * 0, .2 * 0, .05 * 0, .2 * 0] # fractional sigmas
for i, k in enumerate(hyp.keys()): for i, k in enumerate(hyp.keys()):
@ -369,25 +364,17 @@ if __name__ == '__main__':
for k, v in zip(keys, limits): for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1]) hyp[k] = np.clip(hyp[k], v[0], v[1])
# Determine mutation fitness # Train mutation
results = train(opt.cfg, results = train(opt.cfg,
opt.data_cfg, opt.data_cfg,
img_size=opt.img_size, img_size=opt.img_size,
epochs=opt.epochs, epochs=opt.epochs,
batch_size=opt.batch_size, batch_size=opt.batch_size,
accumulate=opt.accumulate) accumulate=opt.accumulate)
mutation_fitness = results[2]
# Write mutation results # Write mutation results
print_mutation(hyp, results) print_mutation(hyp, results)
# Update hyperparameters if fitness improved
if mutation_fitness > best_fitness:
print('Fitness improved!')
best_fitness = mutation_fitness
else:
hyp = old_hyp.copy() # reset hyp to
# # Plot results # # Plot results
# import numpy as np # import numpy as np
# import matplotlib.pyplot as plt # import matplotlib.pyplot as plt