diff --git a/utils/utils.py b/utils/utils.py index 435d3c6d..b0b438dc 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -345,7 +345,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1) - v = ((pred[:, 4] > conf_thres) & (class_prob > .4)) # TODO examine arbitrary 0.3 thres here + v = ((pred[:, 4] > conf_thres) & (class_prob > .4)) # TODO examine arbitrary 0.4 thres here v = v.nonzero().squeeze() if len(v.shape) == 0: v = v.unsqueeze(0) @@ -388,9 +388,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): dc = dc[1:][iou < nms_thres] # remove ious > threshold # Image Total P R mAP - # 5000 5000 0.627 0.593 0.584 - # 4964 5000 0.629 0.594 0.586 # complete probability sort - + # 4964 5000 0.629 0.594 0.586 elif nms_style == 'AND': # requires overlap, single boxes erased while len(dc) > 1: @@ -410,10 +408,7 @@ def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): dc = dc[iou < nms_thres] # Image Total P R mAP - # 4964 5000 0.632 0.597 0.588 # normal - # 4964 5000 0.632 0.597 0.588 # squared - # 4964 5000 0.631 0.597 0.588 # sqrt - # normal best_v1_0.pt + # 4964 5000 0.633 0.598 0.589 # normal if len(det_max) > 0: det_max = torch.cat(det_max)