diff --git a/cfg/yolov3s.cfg b/cfg/yolov3-asff.cfg similarity index 75% rename from cfg/yolov3s.cfg rename to cfg/yolov3-asff.cfg index 0517b09e..ec47ea3a 100644 --- a/cfg/yolov3s.cfg +++ b/cfg/yolov3-asff.cfg @@ -1,3 +1,9 @@ +# Generated by Glenn Jocher (glenn.jocher@ultralytics.com) for https://github.com/ultralytics/yolov3 +# def kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(320, 640)): # from utils.utils import *; kmean_anchors() +# Evolving anchors: 100%|██████████| 1000/1000 [41:15<00:00, 2.48s/it] +# 0.20 iou_thr: 0.992 best possible recall, 4.25 anchors > thr +# kmeans anchors (n=12, img_size=(320, 640), IoU=0.005/0.184/0.634-min/mean/best): 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 + [net] # Testing # batch=1 @@ -28,7 +34,7 @@ filters=32 size=3 stride=1 pad=1 -activation=swish +activation=leaky # Downsample @@ -38,7 +44,7 @@ filters=64 size=3 stride=2 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -46,7 +52,7 @@ filters=32 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -54,7 +60,7 @@ filters=64 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -68,7 +74,7 @@ filters=128 size=3 stride=2 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -76,7 +82,7 @@ filters=64 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -84,7 +90,7 @@ filters=128 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -96,7 +102,7 @@ filters=64 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -104,7 +110,7 @@ filters=128 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -118,7 +124,7 @@ filters=256 size=3 stride=2 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -126,7 +132,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -134,7 +140,7 @@ filters=256 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -146,7 +152,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -154,7 +160,7 @@ filters=256 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -166,7 +172,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -174,7 +180,7 @@ filters=256 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -186,7 +192,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -194,28 +200,7 @@ filters=256 size=3 stride=1 pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -227,7 +212,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -235,7 +220,7 @@ filters=256 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -247,7 +232,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -255,7 +240,7 @@ filters=256 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -267,7 +252,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -275,7 +260,27 @@ filters=256 size=3 stride=1 pad=1 -activation=swish +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky [shortcut] from=-3 @@ -289,7 +294,7 @@ filters=512 size=3 stride=2 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -297,7 +302,7 @@ filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -305,70 +310,7 @@ filters=512 size=3 stride=1 pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -380,7 +322,7 @@ filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -388,49 +330,7 @@ filters=512 size=3 stride=1 pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -442,7 +342,7 @@ filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -450,7 +350,107 @@ filters=512 size=3 stride=1 pad=1 -activation=swish +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[shortcut] +from=-3 +activation=linear + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky [shortcut] from=-3 @@ -464,7 +464,7 @@ filters=1024 size=3 stride=2 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -472,7 +472,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -480,7 +480,7 @@ filters=1024 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -492,7 +492,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -500,7 +500,7 @@ filters=1024 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -512,7 +512,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -520,7 +520,7 @@ filters=1024 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -532,7 +532,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -540,7 +540,7 @@ filters=1024 size=3 stride=1 pad=1 -activation=swish +activation=leaky [shortcut] from=-3 @@ -554,7 +554,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -562,7 +562,7 @@ size=3 stride=1 pad=1 filters=1024 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -570,9 +570,9 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky -### SPP ### +# SPP -------------------------------------------------------------------------- [maxpool] stride=1 size=5 @@ -593,8 +593,7 @@ size=13 [route] layers=-1,-3,-5,-6 - -### End SPP ### +# SPP -------------------------------------------------------------------------- [convolutional] batch_normalize=1 @@ -602,8 +601,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish - +activation=leaky [convolutional] batch_normalize=1 @@ -611,7 +609,7 @@ size=3 stride=1 pad=1 filters=1024 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -619,7 +617,7 @@ filters=512 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -627,29 +625,19 @@ size=3 stride=1 pad=1 filters=1024 -activation=swish +activation=leaky [convolutional] size=1 stride=1 pad=1 -filters=255 +filters=258 activation=linear - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - +# YOLO ------------------------------------------------------------------------- [route] -layers = -4 +layers = -3 [convolutional] batch_normalize=1 @@ -657,7 +645,7 @@ filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [upsample] stride=2 @@ -665,15 +653,13 @@ stride=2 [route] layers = -1, 61 - - [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -681,7 +667,7 @@ size=3 stride=1 pad=1 filters=512 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -689,7 +675,7 @@ filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -697,7 +683,7 @@ size=3 stride=1 pad=1 filters=512 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -705,7 +691,7 @@ filters=256 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -713,30 +699,19 @@ size=3 stride=1 pad=1 filters=512 -activation=swish +activation=leaky [convolutional] size=1 stride=1 pad=1 -filters=255 +filters=258 activation=linear - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - +# YOLO ------------------------------------------------------------------------- [route] -layers = -4 +layers = -3 [convolutional] batch_normalize=1 @@ -744,7 +719,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [upsample] stride=2 @@ -752,15 +727,13 @@ stride=2 [route] layers = -1, 36 - - [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -768,7 +741,7 @@ size=3 stride=1 pad=1 filters=256 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -776,7 +749,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -784,7 +757,7 @@ size=3 stride=1 pad=1 filters=256 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -792,7 +765,7 @@ filters=128 size=1 stride=1 pad=1 -activation=swish +activation=leaky [convolutional] batch_normalize=1 @@ -800,22 +773,32 @@ size=3 stride=1 pad=1 filters=256 -activation=swish +activation=leaky [convolutional] size=1 stride=1 pad=1 -filters=255 +filters=258 activation=linear - [yolo] -mask = 0,1,2 +from=88,99,110 +mask = 8,9,10,11 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 + +[yolo] +from=88,99,110 +mask = 4,5,6,7 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 +classes=80 +num=9 + +[yolo] +from=88,99,110 +mask = 0,1,2,3 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 +classes=80 +num=9 \ No newline at end of file diff --git a/cfg/yolov4-tiny-1cls.cfg b/cfg/yolov4-tiny-1cls.cfg deleted file mode 100644 index 7cf2dd4e..00000000 --- a/cfg/yolov4-tiny-1cls.cfg +++ /dev/null @@ -1,233 +0,0 @@ -# Generated by Glenn Jocher (glenn.jocher@ultralytics.com) for https://github.com/ultralytics/yolov3 -# def kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(320, 640)): # from utils.utils import *; kmean_anchors() -# Evolving anchors: 100%|██████████| 1000/1000 [41:15<00:00, 2.48s/it] -# 0.20 iou_thr: 0.992 best possible recall, 4.25 anchors > thr -# kmeans anchors (n=12, img_size=(320, 640), IoU=0.005/0.184/0.634-min/mean/best): 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 - -[net] -# Testing -# batch=1 -# subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 200000 -policy=steps -steps=180000,190000 -scales=.1,.1 - - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=24 -activation=linear - - - -[yolo] -mask = 8,9,10,11 -anchors = 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 -classes=1 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=24 -activation=linear - -[yolo] -mask = 4,5,6,7 -anchors = 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 -classes=1 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 6 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=24 -activation=linear - -[yolo] -mask = 0,1,2,3 -anchors = 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 -classes=1 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 diff --git a/cfg/yolov4-tiny.cfg b/cfg/yolov4-tiny.cfg deleted file mode 100644 index 5548ca60..00000000 --- a/cfg/yolov4-tiny.cfg +++ /dev/null @@ -1,233 +0,0 @@ -# Generated by Glenn Jocher (glenn.jocher@ultralytics.com) for https://github.com/ultralytics/yolov3 -# def kmean_anchors(path='../coco/train2017.txt', n=12, img_size=(320, 640)): # from utils.utils import *; kmean_anchors() -# Evolving anchors: 100%|██████████| 1000/1000 [41:15<00:00, 2.48s/it] -# 0.20 iou_thr: 0.992 best possible recall, 4.25 anchors > thr -# kmeans anchors (n=12, img_size=(320, 640), IoU=0.005/0.184/0.634-min/mean/best): 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 - -[net] -# Testing -# batch=1 -# subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 200000 -policy=steps -steps=180000,190000 -scales=.1,.1 - - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=linear - - - -[yolo] -mask = 8,9,10,11 -anchors = 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 -classes=80 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=linear - -[yolo] -mask = 4,5,6,7 -anchors = 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 -classes=80 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 6 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=linear - -[yolo] -mask = 0,1,2,3 -anchors = 6,9, 15,16, 17,35, 37,26, 36,67, 63,42, 57,100, 121,81, 112,169, 241,158, 195,310, 426,359 -classes=80 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1