diff --git a/test.py b/test.py index f31dadd9..5521b246 100644 --- a/test.py +++ b/test.py @@ -8,7 +8,7 @@ parser = argparse.ArgumentParser() parser.add_argument('-batch_size', type=int, default=32, help='size of each image batch') parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file') parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='path to data config file') -parser.add_argument('-weights_path', type=str, default='checkpoints/yolov3.pt', help='path to weights file') +parser.add_argument('-weights_path', type=str, default='checkpoints/yolov3.weights', help='path to weights file') parser.add_argument('-class_path', type=str, default='data/coco.names', help='path to class label file') parser.add_argument('-iou_thres', type=float, default=0.5, help='iou threshold required to qualify as detected') parser.add_argument('-conf_thres', type=float, default=0.5, help='object confidence threshold') @@ -117,11 +117,10 @@ for batch_i, (imgs, targets) in enumerate(dataloader): # Compute mean AP for this image mAP = AP.mean() - # Append image mAP to list of validation mAPs - mAPs.append(mAP) + # Append image mAP to list # Print image mAP and running mean mAP - print('+ Sample [%d/%d] AP: %.4f (%.4f)' % (len(mAPs), len(dataloader) * opt.batch_size, AP, np.mean(mAPs))) + print('+ Sample [%d/%d] AP: %.4f (%.4f)' % (len(mAPs), len(dataloader) * opt.batch_size, mAP, np.mean(mAPs))) print('Mean Average Precision: %.4f' % np.mean(mAPs))