diff --git a/utils/datasets.py b/utils/datasets.py index 6f475a49..12545a8a 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -294,8 +294,8 @@ class LoadImagesAndLabels(Dataset): # for training/testing S = img_hsv[:, :, 1].astype(np.float32) # saturation V = img_hsv[:, :, 2].astype(np.float32) # value - a = (random.random() * 2 - 1) * fraction + 1 - b = (random.random() * 2 - 1) * fraction + 1 + a = random.uniform(-1, 1) * fraction + 1 + b = random.uniform(-1, 1) * fraction + 1 S *= a V *= b @@ -331,7 +331,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing # Augment image and labels if self.augment: - img, labels = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.90, 1.10)) + img, labels = random_affine(img, labels, degrees=(-3, 3), translate=(0.05, 0.05), scale=(0.90, 1.10)) nL = len(labels) # number of labels if nL: @@ -376,7 +376,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing return torch.stack(img, 0), torch.cat(label, 0), path, hw -def letterbox(img, new_shape=416, color=(127.5, 127.5, 127.5), mode='auto'): +def letterbox(img, new_shape=416, color=(128, 128, 128), mode='auto'): # Resize a rectangular image to a 32 pixel multiple rectangle # https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] @@ -411,7 +411,7 @@ def letterbox(img, new_shape=416, color=(127.5, 127.5, 127.5), mode='auto'): def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2), - borderValue=(127.5, 127.5, 127.5)): + borderValue=(128, 128, 128)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 @@ -423,20 +423,20 @@ def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale= # Rotation and Scale R = np.eye(3) - a = random.random() * (degrees[1] - degrees[0]) + degrees[0] - # a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations - s = random.random() * (scale[1] - scale[0]) + scale[0] + a = random.uniform(degrees[0], degrees[1]) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(scale[0], scale[1]) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # Translation T = np.eye(3) - T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels) - T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels) + T[0, 2] = random.uniform(-1, 1) * translate[0] * img.shape[0] + border # x translation (pixels) + T[1, 2] = random.uniform(-1, 1) * translate[1] * img.shape[1] + border # y translation (pixels) # Shear S = np.eye(3) - S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg) - S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg) + S[0, 1] = math.tan(random.uniform(shear[0], shear[1]) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(shear[0], shear[1]) * math.pi / 180) # y shear (deg) M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!! imw = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_AREA,