updates
This commit is contained in:
parent
790e25592f
commit
ca38c9050f
17
train.py
17
train.py
|
@ -186,7 +186,6 @@ def train():
|
||||||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||||||
|
|
||||||
|
@ -267,9 +266,12 @@ def train():
|
||||||
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
||||||
s = ('%10s' * 2 + '%10.3g' * 6) % (
|
s = ('%10s' * 2 + '%10.3g' * 6) % (
|
||||||
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
|
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
|
||||||
pbar.set_description(s)
|
pbar.set_description(s) # end batch -----------------------------------------------------------------------
|
||||||
|
|
||||||
# Calculate mAP (always test final epoch, skip first 5 if opt.nosave)
|
if opt.prebias:
|
||||||
|
print_model_biases(model)
|
||||||
|
else:
|
||||||
|
# Calculate mAP (always test final epoch, skip first 10 if opt.nosave)
|
||||||
final_epoch = epoch + 1 == epochs
|
final_epoch = epoch + 1 == epochs
|
||||||
if not (opt.notest or (opt.nosave and epoch < 10)) or final_epoch:
|
if not (opt.notest or (opt.nosave and epoch < 10)) or final_epoch:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
@ -293,7 +295,7 @@ def train():
|
||||||
for xi, title in zip(x, titles):
|
for xi, title in zip(x, titles):
|
||||||
tb_writer.add_scalar(title, xi, epoch)
|
tb_writer.add_scalar(title, xi, epoch)
|
||||||
|
|
||||||
# Update best map
|
# Update best mAP
|
||||||
fitness = results[2] # mAP
|
fitness = results[2] # mAP
|
||||||
if fitness > best_fitness:
|
if fitness > best_fitness:
|
||||||
best_fitness = fitness
|
best_fitness = fitness
|
||||||
|
@ -324,7 +326,7 @@ def train():
|
||||||
torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
|
torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
|
||||||
|
|
||||||
# Delete checkpoint
|
# Delete checkpoint
|
||||||
del chkpt
|
del chkpt # end epoch -------------------------------------------------------------------------------------
|
||||||
|
|
||||||
# Report time
|
# Report time
|
||||||
plot_results() # save as results.png
|
plot_results() # save as results.png
|
||||||
|
@ -373,9 +375,10 @@ if __name__ == '__main__':
|
||||||
train() # transfer-learn yolo biases for 1 epoch
|
train() # transfer-learn yolo biases for 1 epoch
|
||||||
create_backbone('weights/last.pt') # saved results as backbone.pt
|
create_backbone('weights/last.pt') # saved results as backbone.pt
|
||||||
opt.weights = 'weights/backbone.pt' # assign backbone
|
opt.weights = 'weights/backbone.pt' # assign backbone
|
||||||
opt.prebias = False # disable prebias and train normally
|
opt.prebias = False # disable prebias
|
||||||
|
print(opt) # display options
|
||||||
|
|
||||||
train()
|
train() # train normally
|
||||||
|
|
||||||
else: # Evolve hyperparameters (optional)
|
else: # Evolve hyperparameters (optional)
|
||||||
opt.notest = True # only test final epoch
|
opt.notest = True # only test final epoch
|
||||||
|
|
Loading…
Reference in New Issue