From c8f4ee6c46ef0eb1d04c1720ce70c21087b2de34 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sun, 17 May 2020 15:10:31 -0700 Subject: [PATCH] yolov5 regress updates to yolov3 - build_targets() --- utils/utils.py | 62 ++++++++++++++++++++++++++++---------------------- 1 file changed, 35 insertions(+), 27 deletions(-) diff --git a/utils/utils.py b/utils/utils.py index e00f778b..ee64026f 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -408,49 +408,57 @@ def compute_loss(p, targets, model): # predictions, targets, model def build_targets(p, targets, model): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + nt = targets.shape[0] tcls, tbox, indices, anch = [], [], [], [] - reject, use_all_anchors = True, True gain = torch.ones(6, device=targets.device) # normalized to gridspace gain + off = torch.tensor([[1, 0], [0, 1], [-1, 0], [0, -1]], device=targets.device).float() # overlap offsets - + style = None multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) for i, j in enumerate(model.yolo_layers): # get number of grid points and anchor vec for this yolo layer anchors = model.module.module_list[j].anchor_vec if multi_gpu else model.module_list[j].anchor_vec - - # iou of targets-anchors gain[2:] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain - t, a = targets * gain, [] - gwh = t[:, 4:6] + na = anchors.shape[0] # number of anchors + at = torch.arange(na).view(na, 1).repeat(1, nt) # anchor tensor, same as .repeat_interleave(nt) + + # Match targets to anchors + a, t, offsets = [], targets * gain, 0 if nt: - iou = wh_iou(anchors, gwh) # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2)) + # r = t[None, :, 4:6] / anchors[:, None] # wh ratio + # j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare + j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2)) + a, t = at[j], t.repeat(na, 1, 1)[j] # filter - if use_all_anchors: - na = anchors.shape[0] # number of anchors - a = torch.arange(na).view(-1, 1).repeat(1, nt).view(-1) - t = t.repeat(na, 1) - else: # use best anchor only - iou, a = iou.max(0) # best iou and anchor + # overlaps + gxy = t[:, 2:4] # grid xy + z = torch.zeros_like(gxy) + if style == 'rect2': + g = 0.2 # offset + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + a, t = torch.cat((a, a[j], a[k]), 0), torch.cat((t, t[j], t[k]), 0) + offsets = torch.cat((z, z[j] + off[0], z[k] + off[1]), 0) * g - # reject anchors below iou_thres (OPTIONAL, increases P, lowers R) - if reject: - j = iou.view(-1) > model.hyp['iou_t'] # iou threshold hyperparameter - t, a = t[j], a[j] + elif style == 'rect4': + g = 0.5 # offset + j, k = ((gxy % 1. < g) & (gxy > 1.)).T + l, m = ((gxy % 1. > (1 - g)) & (gxy < (gain[[2, 3]] - 1.))).T + a, t = torch.cat((a, a[j], a[k], a[l], a[m]), 0), torch.cat((t, t[j], t[k], t[l], t[m]), 0) + offsets = torch.cat((z, z[j] + off[0], z[k] + off[1], z[l] + off[2], z[m] + off[3]), 0) * g - # Indices - b, c = t[:, :2].long().t() # image, class + # Define + b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh - gi, gj = gxy.long().t() # grid xy indices - indices.append((b, a, gj, gi)) + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices - # Box - tbox.append(torch.cat((gxy % 1., gwh), 1)) # xywh (grids) - anch.append(anchors[a]) # anchor vec - - # Class - tcls.append(c) + # Append + indices.append((b, a, gj, gi)) # image, anchor, grid indices + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box + anch.append(anchors[a]) # anchors + tcls.append(c) # class if c.shape[0]: # if any targets assert c.max() < model.nc, 'Model accepts %g classes labeled from 0-%g, however you labelled a class %g. ' \ 'See https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data' % (