diff --git a/utils/utils.py b/utils/utils.py index bdfdef38..0566bbda 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -281,7 +281,7 @@ def compute_loss(p, targets, model, giou_loss=True): # predictions, targets, mo MSE = nn.MSELoss() BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']])) BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']])) - CE = nn.CrossEntropyLoss() # (weight=model.class_weights) + # CE = nn.CrossEntropyLoss() # (weight=model.class_weights) # Compute losses bs = p[0].shape[0] # batch size @@ -291,7 +291,8 @@ def compute_loss(p, targets, model, giou_loss=True): # predictions, targets, mo tobj = torch.zeros_like(pi0[..., 0]) # target obj # Compute losses - if len(b): # number of targets + nb = len(b) + if nb: # number of targets pi = pi0[b, a, gj, gi] # predictions closest to anchors tobj[b, a, gj, gi] = 1.0 # obj # pi[..., 2:4] = torch.sigmoid(pi[..., 2:4]) # wh power loss (uncomment) @@ -304,10 +305,10 @@ def compute_loss(p, targets, model, giou_loss=True): # predictions, targets, mo lxy += (k * h['xy']) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss lwh += (k * h['wh']) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss - # tclsm = torch.zeros_like(pi[..., 5:]) - # tclsm[range(len(b)), tcls[i]] = 1.0 - # lcls += (k * h['cls']) * BCEcls(pi[..., 5:], tclsm) # cls loss (BCE) - lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # cls loss (CE) + tclsm = torch.zeros_like(pi[..., 5:]) + tclsm[range(nb), tcls[i]] = 1.0 + lcls += (k * h['cls']) * BCEcls(pi[..., 5:], tclsm) # cls loss (BCE) + # lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # cls loss (CE) # Append targets to text file # with open('targets.txt', 'a') as file: