This commit is contained in:
Glenn Jocher 2019-02-08 22:43:05 +01:00
parent d6abdaf8d0
commit c2436d8197
7 changed files with 107 additions and 161 deletions

146
detect.py
View File

@ -9,53 +9,48 @@ from utils import torch_utils
def detect(
net_config_path,
data_config_path,
weights_path,
cfg,
weights,
images_path,
output='output',
batch_size=16,
img_size=416,
conf_thres=0.3,
nms_thres=0.45,
save_txt=False,
save_images=False,
save_images=True,
):
device = torch_utils.select_device()
print("Using device: \"{}\"".format(device))
os.system('rm -rf ' + output)
os.makedirs(output, exist_ok=True)
data_config = parse_data_config(data_config_path)
# Load model
model = Darknet(net_config_path, img_size)
model = Darknet(cfg, img_size)
if weights_path.endswith('.pt'): # pytorch format
if weights_path.endswith('weights/yolov3.pt') and not os.path.isfile(weights_path):
os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights_path)
checkpoint = torch.load(weights_path, map_location='cpu')
if weights.endswith('.pt'): # pytorch format
if weights.endswith('weights/yolov3.pt') and not os.path.isfile(weights):
os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights)
checkpoint = torch.load(weights, map_location='cpu')
model.load_state_dict(checkpoint['model'])
del checkpoint
else: # darknet format
load_darknet_weights(model, weights_path)
load_darknet_weights(model, weights)
model.to(device).eval()
# Set Dataloader
classes = load_classes(data_config['names']) # Extracts class labels from file
dataloader = load_images(images_path, batch_size=batch_size, img_size=img_size)
dataloader = load_images(images_path, img_size=img_size)
imgs = [] # Stores image paths
img_detections = [] # Stores detections for each image index
prev_time = time.time()
for i, (img_paths, img) in enumerate(dataloader):
print('%g/%g' % (i + 1, len(dataloader)), end=' ')
# Classes and colors
classes = load_classes(parse_data_cfg('cfg/coco.data')['names']) # Extracts class labels from file
color_list = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
for i, (path, img, img0) in enumerate(dataloader):
print('image %g/%g: %s' % (i + 1, len(dataloader), path))
t = time.time()
# Get detections
with torch.no_grad():
# cv2.imwrite('zidane_416.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # letterboxed
img = torch.from_numpy(img).unsqueeze(0).to(device)
if ONNX_EXPORT:
pred = torch.onnx._export(model, img, 'weights/model.onnx', verbose=True)
@ -64,71 +59,58 @@ def detect(
pred = pred[pred[:, :, 4] > conf_thres]
if len(pred) > 0:
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)
img_detections.extend(detections)
imgs.extend(img_paths)
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
print('Batch %d... Done. (%.3fs)' % (i, time.time() - prev_time))
prev_time = time.time()
# Draw bounding boxes and labels of detections
if detections is not None:
img = img0
# Bounding-box colors
color_list = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = img_size - pad_y
unpad_w = img_size - pad_x
if len(img_detections) == 0:
return
unique_classes = detections[:, -1].cpu().unique()
bbox_colors = random.sample(color_list, len(unique_classes))
# Iterate through images and save plot of detections
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print("image %g: '%s'" % (img_i, path))
# write results to .txt file
results_img_path = os.path.join(output, path.split('/')[-1])
results_txt_path = results_img_path + '.txt'
if os.path.isfile(results_txt_path):
os.remove(results_txt_path)
# Draw bounding boxes and labels of detections
if detections is not None:
img = cv2.imread(path)
for i in unique_classes:
n = (detections[:, -1].cpu() == i).sum()
print('%g %ss' % (n, classes[int(i)]))
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = img_size - pad_y
unpad_w = img_size - pad_x
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
# Rescale coordinates to original dimensions
box_h = ((y2 - y1) / unpad_h) * img.shape[0]
box_w = ((x2 - x1) / unpad_w) * img.shape[1]
y1 = (((y1 - pad_y // 2) / unpad_h) * img.shape[0]).round().item()
x1 = (((x1 - pad_x // 2) / unpad_w) * img.shape[1]).round().item()
x2 = (x1 + box_w).round().item()
y2 = (y1 + box_h).round().item()
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), max(x2, 0), max(y2, 0)
unique_classes = detections[:, -1].cpu().unique()
bbox_colors = random.sample(color_list, len(unique_classes))
# write to file
if save_txt:
with open(results_txt_path, 'a') as file:
file.write(('%g %g %g %g %g %g \n') % (x1, y1, x2, y2, cls_pred, cls_conf * conf))
# write results to .txt file
results_img_path = os.path.join(output, path.split('/')[-1])
results_txt_path = results_img_path + '.txt'
if os.path.isfile(results_txt_path):
os.remove(results_txt_path)
for i in unique_classes:
n = (detections[:, -1].cpu() == i).sum()
print('%g %ss' % (n, classes[int(i)]))
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
# Rescale coordinates to original dimensions
box_h = ((y2 - y1) / unpad_h) * img.shape[0]
box_w = ((x2 - x1) / unpad_w) * img.shape[1]
y1 = (((y1 - pad_y // 2) / unpad_h) * img.shape[0]).round().item()
x1 = (((x1 - pad_x // 2) / unpad_w) * img.shape[1]).round().item()
x2 = (x1 + box_w).round().item()
y2 = (y1 + box_h).round().item()
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), max(x2, 0), max(y2, 0)
# write to file
if save_txt:
with open(results_txt_path, 'a') as file:
file.write(('%g %g %g %g %g %g \n') % (x1, y1, x2, y2, cls_pred, cls_conf * conf))
if save_images:
# Add the bbox to the plot
label = '%s %.2f' % (classes[int(cls_pred)], conf)
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
plot_one_box([x1, y1, x2, y2], img, label=label, color=color)
if save_images:
# Add the bbox to the plot
label = '%s %.2f' % (classes[int(cls_pred)], conf)
color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])]
plot_one_box([x1, y1, x2, y2], img, label=label, color=color)
# Save generated image with detections
cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img)
if save_images:
# Save generated image with detections
cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img)
print('Done. (%.3fs)\n' % (time.time() - t))
if platform == 'darwin': # MacOS (local)
os.system('open ' + output)
@ -138,32 +120,20 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image-folder', type=str, default='data/samples', help='path to images')
parser.add_argument('--output-folder', type=str, default='output', help='path to outputs')
parser.add_argument('--plot-flag', type=bool, default=True)
parser.add_argument('--txt-out', type=bool, default=False)
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
parser.add_argument('--batch-size', type=int, default=1, help='size of the batches')
parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension')
opt = parser.parse_args()
print(opt)
torch.cuda.empty_cache()
init_seeds()
detect(
opt.cfg,
opt.data_config,
opt.weights,
opt.image_folder,
output=opt.output_folder,
batch_size=opt.batch_size,
img_size=opt.img_size,
conf_thres=opt.conf_thres,
nms_thres=opt.nms_thres,
save_txt=opt.txt_out,
save_images=opt.plot_flag,
)

View File

@ -334,17 +334,17 @@ class Darknet(nn.Module):
return sum(output) if is_training else torch.cat(output, 1)
def load_darknet_weights(self, weights_path, cutoff=-1):
# Parses and loads the weights stored in 'weights_path'
def load_darknet_weights(self, weights, cutoff=-1):
# Parses and loads the weights stored in 'weights'
# cutoff: save layers between 0 and cutoff (if cutoff = -1 all are saved)
weights_file = weights_path.split(os.sep)[-1]
weights_file = weights.split(os.sep)[-1]
# Try to download weights if not available locally
if not os.path.isfile(weights_path):
if not os.path.isfile(weights):
try:
os.system('wget https://pjreddie.com/media/files/' + weights_file + ' -P ' + weights_path)
os.system('wget https://pjreddie.com/media/files/' + weights_file + ' -P ' + weights)
except:
assert os.path.isfile(weights_path)
assert os.path.isfile(weights)
# Establish cutoffs
if weights_file == 'darknet53.conv.74':
@ -353,7 +353,7 @@ def load_darknet_weights(self, weights_path, cutoff=-1):
cutoff = 16
# Open the weights file
fp = open(weights_path, 'rb')
fp = open(weights, 'rb')
header = np.fromfile(fp, dtype=np.int32, count=5) # First five are header values
# Needed to write header when saving weights

30
test.py
View File

@ -8,34 +8,32 @@ from utils import torch_utils
def test(
net_config_path,
data_config_path,
weights_path,
cfg,
data_cfg,
weights,
batch_size=16,
img_size=416,
iou_thres=0.5,
conf_thres=0.3,
nms_thres=0.45,
n_cpus=0,
):
device = torch_utils.select_device()
print("Using device: \"{}\"".format(device))
# Configure run
data_config = parse_data_config(data_config_path)
nC = int(data_config['classes']) # number of classes (80 for COCO)
test_path = data_config['valid']
data_cfg = parse_data_cfg(data_cfg)
nC = int(data_cfg['classes']) # number of classes (80 for COCO)
test_path = data_cfg['valid']
# Initiate model
model = Darknet(net_config_path, img_size)
model = Darknet(cfg, img_size)
# Load weights
if weights_path.endswith('.pt'): # pytorch format
checkpoint = torch.load(weights_path, map_location='cpu')
if weights.endswith('.pt'): # pytorch format
checkpoint = torch.load(weights, map_location='cpu')
model.load_state_dict(checkpoint['model'])
del checkpoint
else: # darknet format
load_darknet_weights(model, weights_path)
load_darknet_weights(model, weights)
model.to(device).eval()
@ -118,7 +116,7 @@ def test(
# Print mAP per class
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:')
classes = load_classes(data_config['names']) # Extracts class labels from file
classes = load_classes(data_cfg['names']) # Extracts class labels from file
for i, c in enumerate(classes):
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
@ -130,12 +128,11 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
parser.add_argument('--n-cpus', type=int, default=0, help='number of cpu threads to use during batch generation')
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
opt = parser.parse_args()
print(opt, end='\n\n')
@ -144,12 +141,11 @@ if __name__ == '__main__':
mAP = test(
opt.cfg,
opt.data_config,
opt.data_cfg,
opt.weights,
batch_size=opt.batch_size,
img_size=opt.img_size,
iou_thres=opt.iou_thres,
conf_thres=opt.conf_thres,
nms_thres=opt.nms_thres,
n_cpus=opt.n_cpus,
)

View File

@ -12,38 +12,37 @@ import test
def train(
net_config_path,
data_config_path,
cfg,
data_cfg,
img_size=416,
resume=False,
epochs=100,
batch_size=16,
accumulated_batches=1,
weights_path='weights',
weights='weights',
report=False,
multi_scale=False,
freeze_backbone=True,
var=0,
):
device = torch_utils.select_device()
print("Using device: \"{}\"".format(device))
if multi_scale: # pass maximum multi_scale size
img_size = 608
else:
torch.backends.cudnn.benchmark = True
os.makedirs(weights_path, exist_ok=True)
latest_weights_file = os.path.join(weights_path, 'latest.pt')
best_weights_file = os.path.join(weights_path, 'best.pt')
os.makedirs(weights, exist_ok=True)
latest_weights_file = os.path.join(weights, 'latest.pt')
best_weights_file = os.path.join(weights, 'best.pt')
# Configure run
data_config = parse_data_config(data_config_path)
num_classes = int(data_config['classes'])
train_path = data_config['train']
data_cfg = parse_data_cfg(data_cfg)
num_classes = int(data_cfg['classes'])
train_path = data_cfg['train']
# Initialize model
model = Darknet(net_config_path, img_size)
model = Darknet(cfg, img_size)
# Get dataloader
dataloader = load_images_and_labels(train_path, batch_size=batch_size, img_size=img_size,
@ -80,7 +79,7 @@ def train(
best_loss = float('inf')
# Initialize model with darknet53 weights (optional)
load_darknet_weights(model, os.path.join(weights_path, 'darknet53.conv.74'))
load_darknet_weights(model, os.path.join(weights, 'darknet53.conv.74'))
if torch.cuda.device_count() > 1:
raise Exception('Multi-GPU not currently supported: https://github.com/ultralytics/yolov3/issues/21')
@ -191,24 +190,16 @@ def train(
# Save best checkpoint
if best_loss == loss_per_target:
os.system('cp {} {}'.format(
latest_weights_file,
best_weights_file,
))
os.system('cp ' + latest_weights_file + ' ' + best_weights_file)
# Save backup weights every 5 epochs
if (epoch > 0) & (epoch % 5 == 0):
backup_file_name = 'backup{}.pt'.format(epoch)
backup_file_path = os.path.join(weights_path, backup_file_name)
os.system('cp {} {}'.format(
latest_weights_file,
backup_file_path,
))
os.system('cp ' + latest_weights_file + ' ' + os.path.join(weights, 'backup{}.pt'.format(epoch)))
# Calculate mAP
mAP, R, P = test.test(
net_config_path,
data_config_path,
cfg,
data_cfg,
latest_weights_file,
batch_size=batch_size,
img_size=img_size,
@ -224,11 +215,11 @@ if __name__ == '__main__':
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
parser.add_argument('--weights-path', type=str, default='weights', help='path to store weights')
parser.add_argument('--weights', type=str, default='weights', help='path to store weights')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--report', action='store_true', help='report TP, FP, FN, P and R per batch (slower)')
parser.add_argument('--freeze', action='store_true', help='freeze darknet53.conv.74 layers for first epoch')
@ -241,13 +232,13 @@ if __name__ == '__main__':
torch.cuda.empty_cache()
train(
opt.cfg,
opt.data_config,
opt.data_cfg,
img_size=opt.img_size,
resume=opt.resume,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulated_batches=opt.accumulated_batches,
weights_path=opt.weights_path,
weights=opt.weights,
report=opt.report,
multi_scale=opt.multi_scale,
freeze_backbone=opt.freeze,

View File

@ -13,7 +13,7 @@ from utils.utils import xyxy2xywh
class load_images(): # for inference
def __init__(self, path, batch_size=1, img_size=416):
def __init__(self, path, img_size=416):
if os.path.isdir(path):
image_format = ['.jpg', '.jpeg', '.png', '.tif']
self.files = sorted(glob.glob('%s/*.*' % path))
@ -22,43 +22,37 @@ class load_images(): # for inference
self.files = [path]
self.nF = len(self.files) # number of image files
self.nB = math.ceil(self.nF / batch_size) # number of batches
self.batch_size = batch_size
self.height = img_size
assert self.nF > 0, 'No images found in path %s' % path
# RGB normalization values
# self.rgb_mean = np.array([60.134, 49.697, 40.746], dtype=np.float32).reshape((3, 1, 1))
# self.rgb_std = np.array([29.99, 24.498, 22.046], dtype=np.float32).reshape((3, 1, 1))
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if self.count == self.nB:
if self.count == self.nF:
raise StopIteration
img_path = self.files[self.count]
# Read image
img = cv2.imread(img_path) # BGR
img0 = cv2.imread(img_path) # BGR
assert img0 is not None, 'Failed to load ' + img_path
# Padded resize
img, _, _, _ = resize_square(img, height=self.height, color=(127.5, 127.5, 127.5))
img, _, _, _ = resize_square(img0, height=self.height, color=(127.5, 127.5, 127.5))
# Normalize RGB
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img, dtype=np.float32)
# img -= self.rgb_mean
# img /= self.rgb_std
img /= 255.0
return [img_path], img
# cv2.imwrite(img_path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return img_path, img, img0
def __len__(self):
return self.nB # number of batches
return self.nF # number of files
class load_images_and_labels(): # for training
@ -81,10 +75,6 @@ class load_images_and_labels(): # for training
assert self.nB > 0, 'No images found in path %s' % path
# RGB normalization values
# self.rgb_mean = np.array([60.134, 49.697, 40.746], dtype=np.float32).reshape((1, 3, 1, 1))
# self.rgb_std = np.array([29.99, 24.498, 22.046], dtype=np.float32).reshape((1, 3, 1, 1))
def __iter__(self):
self.count = -1
self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
@ -191,8 +181,6 @@ class load_images_and_labels(): # for training
# Normalize
img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and cv2 to pytorch
img_all = np.ascontiguousarray(img_all, dtype=np.float32)
# img_all -= self.rgb_mean
# img_all /= self.rgb_std
img_all /= 255.0
return torch.from_numpy(img_all), labels_all

View File

@ -20,7 +20,7 @@ def parse_model_config(path):
return module_defs
def parse_data_config(path):
def parse_data_cfg(path):
"""Parses the data configuration file"""
options = dict()
options['gpus'] = '0,1,2,3'

View File

@ -21,4 +21,5 @@ def select_device(force_cpu=False):
device = torch.device('cpu')
else:
device = torch.device('cuda:0' if CUDA_AVAILABLE else 'cpu')
print('Using ' + str(device) + '\n')
return device