updates
This commit is contained in:
parent
d6abdaf8d0
commit
c2436d8197
72
detect.py
72
detect.py
|
@ -9,53 +9,48 @@ from utils import torch_utils
|
|||
|
||||
|
||||
def detect(
|
||||
net_config_path,
|
||||
data_config_path,
|
||||
weights_path,
|
||||
cfg,
|
||||
weights,
|
||||
images_path,
|
||||
output='output',
|
||||
batch_size=16,
|
||||
img_size=416,
|
||||
conf_thres=0.3,
|
||||
nms_thres=0.45,
|
||||
save_txt=False,
|
||||
save_images=False,
|
||||
save_images=True,
|
||||
):
|
||||
device = torch_utils.select_device()
|
||||
print("Using device: \"{}\"".format(device))
|
||||
|
||||
os.system('rm -rf ' + output)
|
||||
os.makedirs(output, exist_ok=True)
|
||||
|
||||
data_config = parse_data_config(data_config_path)
|
||||
|
||||
# Load model
|
||||
model = Darknet(net_config_path, img_size)
|
||||
model = Darknet(cfg, img_size)
|
||||
|
||||
if weights_path.endswith('.pt'): # pytorch format
|
||||
if weights_path.endswith('weights/yolov3.pt') and not os.path.isfile(weights_path):
|
||||
os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights_path)
|
||||
checkpoint = torch.load(weights_path, map_location='cpu')
|
||||
if weights.endswith('.pt'): # pytorch format
|
||||
if weights.endswith('weights/yolov3.pt') and not os.path.isfile(weights):
|
||||
os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights)
|
||||
checkpoint = torch.load(weights, map_location='cpu')
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
del checkpoint
|
||||
else: # darknet format
|
||||
load_darknet_weights(model, weights_path)
|
||||
load_darknet_weights(model, weights)
|
||||
|
||||
model.to(device).eval()
|
||||
|
||||
# Set Dataloader
|
||||
classes = load_classes(data_config['names']) # Extracts class labels from file
|
||||
dataloader = load_images(images_path, batch_size=batch_size, img_size=img_size)
|
||||
dataloader = load_images(images_path, img_size=img_size)
|
||||
|
||||
imgs = [] # Stores image paths
|
||||
img_detections = [] # Stores detections for each image index
|
||||
prev_time = time.time()
|
||||
for i, (img_paths, img) in enumerate(dataloader):
|
||||
print('%g/%g' % (i + 1, len(dataloader)), end=' ')
|
||||
# Classes and colors
|
||||
classes = load_classes(parse_data_cfg('cfg/coco.data')['names']) # Extracts class labels from file
|
||||
color_list = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
|
||||
|
||||
for i, (path, img, img0) in enumerate(dataloader):
|
||||
print('image %g/%g: %s' % (i + 1, len(dataloader), path))
|
||||
t = time.time()
|
||||
|
||||
# Get detections
|
||||
with torch.no_grad():
|
||||
# cv2.imwrite('zidane_416.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # letterboxed
|
||||
img = torch.from_numpy(img).unsqueeze(0).to(device)
|
||||
if ONNX_EXPORT:
|
||||
pred = torch.onnx._export(model, img, 'weights/model.onnx', verbose=True)
|
||||
|
@ -64,26 +59,11 @@ def detect(
|
|||
pred = pred[pred[:, :, 4] > conf_thres]
|
||||
|
||||
if len(pred) > 0:
|
||||
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)
|
||||
img_detections.extend(detections)
|
||||
imgs.extend(img_paths)
|
||||
|
||||
print('Batch %d... Done. (%.3fs)' % (i, time.time() - prev_time))
|
||||
prev_time = time.time()
|
||||
|
||||
# Bounding-box colors
|
||||
color_list = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
|
||||
|
||||
if len(img_detections) == 0:
|
||||
return
|
||||
|
||||
# Iterate through images and save plot of detections
|
||||
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
|
||||
print("image %g: '%s'" % (img_i, path))
|
||||
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
|
||||
|
||||
# Draw bounding boxes and labels of detections
|
||||
if detections is not None:
|
||||
img = cv2.imread(path)
|
||||
img = img0
|
||||
|
||||
# The amount of padding that was added
|
||||
pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape))
|
||||
|
@ -130,6 +110,8 @@ def detect(
|
|||
# Save generated image with detections
|
||||
cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img)
|
||||
|
||||
print('Done. (%.3fs)\n' % (time.time() - t))
|
||||
|
||||
if platform == 'darwin': # MacOS (local)
|
||||
os.system('open ' + output)
|
||||
|
||||
|
@ -138,32 +120,20 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--image-folder', type=str, default='data/samples', help='path to images')
|
||||
parser.add_argument('--output-folder', type=str, default='output', help='path to outputs')
|
||||
parser.add_argument('--plot-flag', type=bool, default=True)
|
||||
parser.add_argument('--txt-out', type=bool, default=False)
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
||||
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')
|
||||
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
|
||||
parser.add_argument('--batch-size', type=int, default=1, help='size of the batches')
|
||||
parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension')
|
||||
opt = parser.parse_args()
|
||||
print(opt)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
init_seeds()
|
||||
|
||||
detect(
|
||||
opt.cfg,
|
||||
opt.data_config,
|
||||
opt.weights,
|
||||
opt.image_folder,
|
||||
output=opt.output_folder,
|
||||
batch_size=opt.batch_size,
|
||||
img_size=opt.img_size,
|
||||
conf_thres=opt.conf_thres,
|
||||
nms_thres=opt.nms_thres,
|
||||
save_txt=opt.txt_out,
|
||||
save_images=opt.plot_flag,
|
||||
)
|
||||
|
|
14
models.py
14
models.py
|
@ -334,17 +334,17 @@ class Darknet(nn.Module):
|
|||
return sum(output) if is_training else torch.cat(output, 1)
|
||||
|
||||
|
||||
def load_darknet_weights(self, weights_path, cutoff=-1):
|
||||
# Parses and loads the weights stored in 'weights_path'
|
||||
def load_darknet_weights(self, weights, cutoff=-1):
|
||||
# Parses and loads the weights stored in 'weights'
|
||||
# cutoff: save layers between 0 and cutoff (if cutoff = -1 all are saved)
|
||||
weights_file = weights_path.split(os.sep)[-1]
|
||||
weights_file = weights.split(os.sep)[-1]
|
||||
|
||||
# Try to download weights if not available locally
|
||||
if not os.path.isfile(weights_path):
|
||||
if not os.path.isfile(weights):
|
||||
try:
|
||||
os.system('wget https://pjreddie.com/media/files/' + weights_file + ' -P ' + weights_path)
|
||||
os.system('wget https://pjreddie.com/media/files/' + weights_file + ' -P ' + weights)
|
||||
except:
|
||||
assert os.path.isfile(weights_path)
|
||||
assert os.path.isfile(weights)
|
||||
|
||||
# Establish cutoffs
|
||||
if weights_file == 'darknet53.conv.74':
|
||||
|
@ -353,7 +353,7 @@ def load_darknet_weights(self, weights_path, cutoff=-1):
|
|||
cutoff = 16
|
||||
|
||||
# Open the weights file
|
||||
fp = open(weights_path, 'rb')
|
||||
fp = open(weights, 'rb')
|
||||
header = np.fromfile(fp, dtype=np.int32, count=5) # First five are header values
|
||||
|
||||
# Needed to write header when saving weights
|
||||
|
|
30
test.py
30
test.py
|
@ -8,34 +8,32 @@ from utils import torch_utils
|
|||
|
||||
|
||||
def test(
|
||||
net_config_path,
|
||||
data_config_path,
|
||||
weights_path,
|
||||
cfg,
|
||||
data_cfg,
|
||||
weights,
|
||||
batch_size=16,
|
||||
img_size=416,
|
||||
iou_thres=0.5,
|
||||
conf_thres=0.3,
|
||||
nms_thres=0.45,
|
||||
n_cpus=0,
|
||||
):
|
||||
device = torch_utils.select_device()
|
||||
print("Using device: \"{}\"".format(device))
|
||||
|
||||
# Configure run
|
||||
data_config = parse_data_config(data_config_path)
|
||||
nC = int(data_config['classes']) # number of classes (80 for COCO)
|
||||
test_path = data_config['valid']
|
||||
data_cfg = parse_data_cfg(data_cfg)
|
||||
nC = int(data_cfg['classes']) # number of classes (80 for COCO)
|
||||
test_path = data_cfg['valid']
|
||||
|
||||
# Initiate model
|
||||
model = Darknet(net_config_path, img_size)
|
||||
model = Darknet(cfg, img_size)
|
||||
|
||||
# Load weights
|
||||
if weights_path.endswith('.pt'): # pytorch format
|
||||
checkpoint = torch.load(weights_path, map_location='cpu')
|
||||
if weights.endswith('.pt'): # pytorch format
|
||||
checkpoint = torch.load(weights, map_location='cpu')
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
del checkpoint
|
||||
else: # darknet format
|
||||
load_darknet_weights(model, weights_path)
|
||||
load_darknet_weights(model, weights)
|
||||
|
||||
model.to(device).eval()
|
||||
|
||||
|
@ -118,7 +116,7 @@ def test(
|
|||
# Print mAP per class
|
||||
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:')
|
||||
|
||||
classes = load_classes(data_config['names']) # Extracts class labels from file
|
||||
classes = load_classes(data_cfg['names']) # Extracts class labels from file
|
||||
for i, c in enumerate(classes):
|
||||
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
|
||||
|
||||
|
@ -130,12 +128,11 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser(prog='test.py')
|
||||
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
|
||||
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
|
||||
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
|
||||
parser.add_argument('--n-cpus', type=int, default=0, help='number of cpu threads to use during batch generation')
|
||||
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
|
||||
opt = parser.parse_args()
|
||||
print(opt, end='\n\n')
|
||||
|
@ -144,12 +141,11 @@ if __name__ == '__main__':
|
|||
|
||||
mAP = test(
|
||||
opt.cfg,
|
||||
opt.data_config,
|
||||
opt.data_cfg,
|
||||
opt.weights,
|
||||
batch_size=opt.batch_size,
|
||||
img_size=opt.img_size,
|
||||
iou_thres=opt.iou_thres,
|
||||
conf_thres=opt.conf_thres,
|
||||
nms_thres=opt.nms_thres,
|
||||
n_cpus=opt.n_cpus,
|
||||
)
|
||||
|
|
47
train.py
47
train.py
|
@ -12,38 +12,37 @@ import test
|
|||
|
||||
|
||||
def train(
|
||||
net_config_path,
|
||||
data_config_path,
|
||||
cfg,
|
||||
data_cfg,
|
||||
img_size=416,
|
||||
resume=False,
|
||||
epochs=100,
|
||||
batch_size=16,
|
||||
accumulated_batches=1,
|
||||
weights_path='weights',
|
||||
weights='weights',
|
||||
report=False,
|
||||
multi_scale=False,
|
||||
freeze_backbone=True,
|
||||
var=0,
|
||||
):
|
||||
device = torch_utils.select_device()
|
||||
print("Using device: \"{}\"".format(device))
|
||||
|
||||
if multi_scale: # pass maximum multi_scale size
|
||||
img_size = 608
|
||||
else:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
os.makedirs(weights_path, exist_ok=True)
|
||||
latest_weights_file = os.path.join(weights_path, 'latest.pt')
|
||||
best_weights_file = os.path.join(weights_path, 'best.pt')
|
||||
os.makedirs(weights, exist_ok=True)
|
||||
latest_weights_file = os.path.join(weights, 'latest.pt')
|
||||
best_weights_file = os.path.join(weights, 'best.pt')
|
||||
|
||||
# Configure run
|
||||
data_config = parse_data_config(data_config_path)
|
||||
num_classes = int(data_config['classes'])
|
||||
train_path = data_config['train']
|
||||
data_cfg = parse_data_cfg(data_cfg)
|
||||
num_classes = int(data_cfg['classes'])
|
||||
train_path = data_cfg['train']
|
||||
|
||||
# Initialize model
|
||||
model = Darknet(net_config_path, img_size)
|
||||
model = Darknet(cfg, img_size)
|
||||
|
||||
# Get dataloader
|
||||
dataloader = load_images_and_labels(train_path, batch_size=batch_size, img_size=img_size,
|
||||
|
@ -80,7 +79,7 @@ def train(
|
|||
best_loss = float('inf')
|
||||
|
||||
# Initialize model with darknet53 weights (optional)
|
||||
load_darknet_weights(model, os.path.join(weights_path, 'darknet53.conv.74'))
|
||||
load_darknet_weights(model, os.path.join(weights, 'darknet53.conv.74'))
|
||||
|
||||
if torch.cuda.device_count() > 1:
|
||||
raise Exception('Multi-GPU not currently supported: https://github.com/ultralytics/yolov3/issues/21')
|
||||
|
@ -191,24 +190,16 @@ def train(
|
|||
|
||||
# Save best checkpoint
|
||||
if best_loss == loss_per_target:
|
||||
os.system('cp {} {}'.format(
|
||||
latest_weights_file,
|
||||
best_weights_file,
|
||||
))
|
||||
os.system('cp ' + latest_weights_file + ' ' + best_weights_file)
|
||||
|
||||
# Save backup weights every 5 epochs
|
||||
if (epoch > 0) & (epoch % 5 == 0):
|
||||
backup_file_name = 'backup{}.pt'.format(epoch)
|
||||
backup_file_path = os.path.join(weights_path, backup_file_name)
|
||||
os.system('cp {} {}'.format(
|
||||
latest_weights_file,
|
||||
backup_file_path,
|
||||
))
|
||||
os.system('cp ' + latest_weights_file + ' ' + os.path.join(weights, 'backup{}.pt'.format(epoch)))
|
||||
|
||||
# Calculate mAP
|
||||
mAP, R, P = test.test(
|
||||
net_config_path,
|
||||
data_config_path,
|
||||
cfg,
|
||||
data_cfg,
|
||||
latest_weights_file,
|
||||
batch_size=batch_size,
|
||||
img_size=img_size,
|
||||
|
@ -224,11 +215,11 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
|
||||
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
||||
parser.add_argument('--accumulated-batches', type=int, default=1, help='number of batches before optimizer step')
|
||||
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
||||
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
|
||||
parser.add_argument('--weights-path', type=str, default='weights', help='path to store weights')
|
||||
parser.add_argument('--weights', type=str, default='weights', help='path to store weights')
|
||||
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
||||
parser.add_argument('--report', action='store_true', help='report TP, FP, FN, P and R per batch (slower)')
|
||||
parser.add_argument('--freeze', action='store_true', help='freeze darknet53.conv.74 layers for first epoch')
|
||||
|
@ -241,13 +232,13 @@ if __name__ == '__main__':
|
|||
torch.cuda.empty_cache()
|
||||
train(
|
||||
opt.cfg,
|
||||
opt.data_config,
|
||||
opt.data_cfg,
|
||||
img_size=opt.img_size,
|
||||
resume=opt.resume,
|
||||
epochs=opt.epochs,
|
||||
batch_size=opt.batch_size,
|
||||
accumulated_batches=opt.accumulated_batches,
|
||||
weights_path=opt.weights_path,
|
||||
weights=opt.weights,
|
||||
report=opt.report,
|
||||
multi_scale=opt.multi_scale,
|
||||
freeze_backbone=opt.freeze,
|
||||
|
|
|
@ -13,7 +13,7 @@ from utils.utils import xyxy2xywh
|
|||
|
||||
|
||||
class load_images(): # for inference
|
||||
def __init__(self, path, batch_size=1, img_size=416):
|
||||
def __init__(self, path, img_size=416):
|
||||
if os.path.isdir(path):
|
||||
image_format = ['.jpg', '.jpeg', '.png', '.tif']
|
||||
self.files = sorted(glob.glob('%s/*.*' % path))
|
||||
|
@ -22,43 +22,37 @@ class load_images(): # for inference
|
|||
self.files = [path]
|
||||
|
||||
self.nF = len(self.files) # number of image files
|
||||
self.nB = math.ceil(self.nF / batch_size) # number of batches
|
||||
self.batch_size = batch_size
|
||||
self.height = img_size
|
||||
|
||||
assert self.nF > 0, 'No images found in path %s' % path
|
||||
|
||||
# RGB normalization values
|
||||
# self.rgb_mean = np.array([60.134, 49.697, 40.746], dtype=np.float32).reshape((3, 1, 1))
|
||||
# self.rgb_std = np.array([29.99, 24.498, 22.046], dtype=np.float32).reshape((3, 1, 1))
|
||||
|
||||
def __iter__(self):
|
||||
self.count = -1
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
self.count += 1
|
||||
if self.count == self.nB:
|
||||
if self.count == self.nF:
|
||||
raise StopIteration
|
||||
img_path = self.files[self.count]
|
||||
|
||||
# Read image
|
||||
img = cv2.imread(img_path) # BGR
|
||||
img0 = cv2.imread(img_path) # BGR
|
||||
assert img0 is not None, 'Failed to load ' + img_path
|
||||
|
||||
# Padded resize
|
||||
img, _, _, _ = resize_square(img, height=self.height, color=(127.5, 127.5, 127.5))
|
||||
img, _, _, _ = resize_square(img0, height=self.height, color=(127.5, 127.5, 127.5))
|
||||
|
||||
# Normalize RGB
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1)
|
||||
img = np.ascontiguousarray(img, dtype=np.float32)
|
||||
# img -= self.rgb_mean
|
||||
# img /= self.rgb_std
|
||||
img /= 255.0
|
||||
|
||||
return [img_path], img
|
||||
# cv2.imwrite(img_path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
|
||||
return img_path, img, img0
|
||||
|
||||
def __len__(self):
|
||||
return self.nB # number of batches
|
||||
return self.nF # number of files
|
||||
|
||||
|
||||
class load_images_and_labels(): # for training
|
||||
|
@ -81,10 +75,6 @@ class load_images_and_labels(): # for training
|
|||
|
||||
assert self.nB > 0, 'No images found in path %s' % path
|
||||
|
||||
# RGB normalization values
|
||||
# self.rgb_mean = np.array([60.134, 49.697, 40.746], dtype=np.float32).reshape((1, 3, 1, 1))
|
||||
# self.rgb_std = np.array([29.99, 24.498, 22.046], dtype=np.float32).reshape((1, 3, 1, 1))
|
||||
|
||||
def __iter__(self):
|
||||
self.count = -1
|
||||
self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||
|
@ -191,8 +181,6 @@ class load_images_and_labels(): # for training
|
|||
# Normalize
|
||||
img_all = np.stack(img_all)[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB and cv2 to pytorch
|
||||
img_all = np.ascontiguousarray(img_all, dtype=np.float32)
|
||||
# img_all -= self.rgb_mean
|
||||
# img_all /= self.rgb_std
|
||||
img_all /= 255.0
|
||||
|
||||
return torch.from_numpy(img_all), labels_all
|
||||
|
|
|
@ -20,7 +20,7 @@ def parse_model_config(path):
|
|||
|
||||
return module_defs
|
||||
|
||||
def parse_data_config(path):
|
||||
def parse_data_cfg(path):
|
||||
"""Parses the data configuration file"""
|
||||
options = dict()
|
||||
options['gpus'] = '0,1,2,3'
|
||||
|
|
|
@ -21,4 +21,5 @@ def select_device(force_cpu=False):
|
|||
device = torch.device('cpu')
|
||||
else:
|
||||
device = torch.device('cuda:0' if CUDA_AVAILABLE else 'cpu')
|
||||
print('Using ' + str(device) + '\n')
|
||||
return device
|
||||
|
|
Loading…
Reference in New Issue