align loss to darknet
This commit is contained in:
parent
208fd77fe4
commit
c09dc09dba
10
models.py
10
models.py
|
@ -159,14 +159,16 @@ class YOLOLayer(nn.Module):
|
|||
# Mask outputs to ignore non-existing objects (but keep confidence predictions)
|
||||
nT = sum([len(x) for x in targets]) # number of targets
|
||||
nM = mask.sum().float() # number of anchors (assigned to targets)
|
||||
# nB = len(targets) # batch size
|
||||
k = 1
|
||||
nB = len(targets) # batch size
|
||||
k = nM / nB
|
||||
if nM > 0:
|
||||
lx = k * MSELoss(x[mask], tx[mask])
|
||||
ly = k * MSELoss(y[mask], ty[mask])
|
||||
lw = k * MSELoss(w[mask], tw[mask])
|
||||
lh = k * MSELoss(h[mask], th[mask])
|
||||
lconf = k * BCEWithLogitsLoss(pred_conf[mask], mask[mask].float())
|
||||
|
||||
# lconf = k * BCEWithLogitsLoss(pred_conf[mask], mask[mask].float())
|
||||
lconf = k * BCEWithLogitsLoss(pred_conf, mask.float())
|
||||
|
||||
# lcls = k * CrossEntropyLoss(pred_cls[mask], torch.argmax(tcls, 1))
|
||||
lcls = k * BCEWithLogitsLoss(pred_cls[mask], tcls.float())
|
||||
|
@ -174,7 +176,7 @@ class YOLOLayer(nn.Module):
|
|||
lx, ly, lw, lh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0]), FT([0])
|
||||
|
||||
# Add confidence loss for background anchors (noobj)
|
||||
lconf += k * BCEWithLogitsLoss(pred_conf[~mask], mask[~mask].float())
|
||||
#lconf += k * BCEWithLogitsLoss(pred_conf[~mask], mask[~mask].float())
|
||||
|
||||
# Sum loss components
|
||||
loss = lx + ly + lw + lh + lconf + lcls
|
||||
|
|
Loading…
Reference in New Issue