diff --git a/train.py b/train.py index c0c0aacf..ba001eb3 100644 --- a/train.py +++ b/train.py @@ -113,7 +113,7 @@ def train( # Dataloader dataloader = DataLoader(dataset, batch_size=batch_size, - num_workers=num_workers, + num_workers=0, shuffle=True, pin_memory=True, collate_fn=dataset.collate_fn, @@ -198,8 +198,8 @@ def train( dataset.img_size = random.choice(range(10, 20)) * 32 print('multi_scale img_size = %g' % dataset.img_size) - # Calculate mAP - if not (opt.notest or (opt.nosave and epoch < 2)) or epoch == epochs - 1: # always test final epoch + # Calculate mAP (always test final epoch, skip first 5 if opt.nosave) + if not (opt.notest or (opt.nosave and epoch < 5)) or epoch == epochs - 1: with torch.no_grad(): results = test.test(cfg, data_cfg, batch_size=batch_size, img_size=img_size, model=model, conf_thres=0.1) @@ -246,7 +246,7 @@ if __name__ == '__main__': parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch') parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing') parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path') - parser.add_argument('--data-cfg', type=str, default='data/coco.data', help='coco.data file path') + parser.add_argument('--data-cfg', type=str, default='data/coco_1img.data', help='coco.data file path') parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608') parser.add_argument('--img-size', type=int, default=416, help='pixels') parser.add_argument('--resume', action='store_true', help='resume training flag')