diff --git a/test.py b/test.py index 171159b6..0a5a877a 100644 --- a/test.py +++ b/test.py @@ -40,8 +40,8 @@ def test( # Configure run data_cfg = parse_data_cfg(data_cfg) test_path = data_cfg['valid'] - if (os.sep + 'coco' + os.sep) in test_path: # COCO dataset probable - save_json = True # use pycocotools + # if (os.sep + 'coco' + os.sep) in test_path: # COCO dataset probable + # save_json = True # use pycocotools # Dataloader dataset = LoadImagesAndLabels(test_path, img_size=img_size) diff --git a/utils/utils.py b/utils/utils.py index 0d810685..d00b89d1 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -477,13 +477,13 @@ def plot_wh_methods(): # from utils.utils import *; plot_wh_methods() def plot_results(start=0): # from utils.utils import *; plot_results() - # Plot YOLO training results file 'results.txt' + # Plot training results files 'results*.txt' # import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt') fig = plt.figure(figsize=(14, 7)) s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP'] for f in sorted(glob.glob('results*.txt')): - results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11, 12]).T # column 11 is mAP + results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP x = range(start, results.shape[1]) for i in range(8): plt.subplot(2, 4, i + 1) @@ -491,7 +491,5 @@ def plot_results(start=0): # from utils.utils import *; plot_results() plt.title(s[i]) if i == 0: plt.legend() - if i == 7: - plt.plot(x, results[i + 1, x], marker='.', label=f) fig.tight_layout() fig.savefig('results.jpg', dpi=fig.dpi)