diff --git a/utils/datasets.py b/utils/datasets.py index b8d88a63..db2ac998 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -140,15 +140,14 @@ class LoadImagesAndLabels(Dataset): # for training/testing assert n > 0, 'No images found in %s' % path self.img_size = img_size self.augment = augment + self.image_weights = image_weights + self.rect = False if image_weights else rect self.label_files = [x.replace('images', 'labels'). replace('.jpeg', '.txt'). replace('.jpg', '.txt'). replace('.bmp', '.txt'). replace('.png', '.txt') for x in self.img_files] - self.image_weights = image_weights - self.rect = False if image_weights else rect - # Rectangular Training https://github.com/ultralytics/yolov3/issues/232 if self.rect: from PIL import Image @@ -187,7 +186,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing # Preload images if n < 1001: # preload all images into memory if possible - self.imgs = [cv2.imread(self.img_files[i]) for i in range(n)] + self.imgs = [cv2.imread(self.img_files[i]) for i in tqdm(range(n), desc='Reading images')] # Preload labels (required for weighted CE training) self.labels = [np.zeros((0, 5))] * n diff --git a/utils/utils.py b/utils/utils.py index 60b225d9..6eba4e5f 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -547,7 +547,7 @@ def plot_images(imgs, targets, fname='images.jpg'): plt.close() -def plot_results(start=1, stop=0): # from utils.utils import *; plot_results() +def plot_results(start=0, stop=0): # from utils.utils import *; plot_results() # Plot training results files 'results*.txt' # import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt')