This commit is contained in:
Glenn Jocher 2020-05-17 14:30:12 -07:00
parent 6bfb3a96c8
commit bbd82bb94d
3 changed files with 14 additions and 35 deletions

View File

@ -626,9 +626,8 @@ def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scale
def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, border=0):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
# targets = [cls, xyxy]
if targets is None: # targets = [cls, xyxy]
targets = []
height = img.shape[0] + border * 2
width = img.shape[1] + border * 2
@ -637,6 +636,7 @@ def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10,
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
# Translation

View File

@ -12,10 +12,10 @@ import torch.nn.functional as F
def init_seeds(seed=0):
torch.manual_seed(seed)
# Remove randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html
# Reduce randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html
if seed == 0:
cudnn.deterministic = True
cudnn.benchmark = False
cudnn.deterministic = False
cudnn.benchmark = True
def select_device(device='', apex=False, batch_size=None):

View File

@ -103,7 +103,7 @@ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
def xyxy2xywh(x):
# Transform box coordinates from [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right) to [x, y, w, h]
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
@ -113,7 +113,7 @@ def xyxy2xywh(x):
def xywh2xyxy(x):
# Transform box coordinates from [x, y, w, h] to [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right)
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
@ -122,26 +122,6 @@ def xywh2xyxy(x):
return y
# def xywh2xyxy(box):
# # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2]
# if isinstance(box, torch.Tensor):
# x, y, w, h = box.t()
# return torch.stack((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).t()
# else: # numpy
# x, y, w, h = box.T
# return np.stack((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).T
#
#
# def xyxy2xywh(box):
# # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h]
# if isinstance(box, torch.Tensor):
# x1, y1, x2, y2 = box.t()
# return torch.stack(((x1 + x2) / 2, (y1 + y2) / 2, x2 - x1, y2 - y1)).t()
# else: # numpy
# x1, y1, x2, y2 = box.T
# return np.stack(((x1 + x2) / 2, (y1 + y2) / 2, x2 - x1, y2 - y1)).T
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
@ -187,7 +167,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls):
# Create Precision-Recall curve and compute AP for each class
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
s = [len(unique_classes), tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
for ci, c in enumerate(unique_classes):
i = pred_cls == c
@ -601,7 +581,7 @@ def print_model_biases(model):
pass
def strip_optimizer(f='weights/last.pt'): # from utils.utils import *; strip_optimizer()
def strip_optimizer(f='weights/best.pt'): # from utils.utils import *; strip_optimizer()
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
x = torch.load(f, map_location=torch.device('cpu'))
x['optimizer'] = None
@ -614,12 +594,11 @@ def create_backbone(f='weights/last.pt'): # from utils.utils import *; create_b
x['optimizer'] = None
x['training_results'] = None
x['epoch'] = -1
for p in x['model'].values():
try:
p.requires_grad = True
except:
pass
torch.save(x, 'weights/backbone.pt')
for p in x['model'].parameters():
p.requires_grad = True
s = 'weights/backbone.pt'
print('%s saved as %s' % (f, s))
torch.save(x, s)
def coco_class_count(path='../coco/labels/train2014/'):